.var sweep_rate = 1; /* controls Mregister, signal frequency fc = c*Meg*ftiner
*/

.var sweep_w dth = 0; /* controls width of sweep, ranges fromO to - 15 */
.var WD+ 1]; /* delay-line buffer, max delay = D */
.var si ne_val ue; /* wavetabl e update via tiner for delay cal cuation */
.var si ne[ WaveSi ze] = "sinetbl.dat" /* mn frequency f1 = fs/Ds = 8/4 = 2 Hz */
/* |l oad one period of the wavetable */

. endseg;
[* ceeeeeee e PROGRAM MEMORY CODE---------------------"------------ */
. segment /pm pm code;
Init_Flange_Buffers:

B2 =w L2 = @y /* delay-line buffer pointer and | ength */

m =1,

LCNTR = L2; /* clear delay line buffer to zero */

DO clrDine UNTIL LCE;
clrDine: dm(i 2, nmR2) = 0;

B6 = si ne; /* pointer for signal generator */

L6 = @i ne; /* get size of sine table | ookup */

RTS;
/* ___________________________________________________________________ */

/* Set up tiner for the Chorus Effects wavetabl e generator */

TinmerO_Initialization:

bit clr node2 TI MENO; [* timer off initially */

bit set node2 PWMOUTO | PERI OD _CNTO | | NT_H 0; /* latch tinerO to high priority timer int */

r0 = nodul ation_rate;

DM TPERI OD0) = rO;

DM TCOUNTO) = rO0; /* assuming 16.7 nSec cycle @60 MPs */

ro = 10;

DM TPW DTHO) =rO0;

bit set imask TMZHI; /* timer high priority */

bit set node2 TI MENO; /* timer on */

rts;
/* ______________________________________________________________________________________________ */
/* */
/* Wavet abl e Generator used for Flange Del ay Line Mdul ation */
/* */
/* ______________________________________________________________________________________________ */
/* Hgh Priority Tinmer Interrupt Service Routine for Delay Line Mdulation of Flange Buffer */
/* This routine is a wavetabl e generator, where r3 = where r3 = D2 * sin(2*pi*fc*t) */
/* and it nodul ates the delay line around rotating tap center */
wavet abl e_gen:

bit set nodel SRRFL; /* enabl e secondary registers rO - r8 */

nop; /* 1 cycle latency witing to Mddel register */

nm6 = dn(sweep_rate); /* desired increnent ¢ - frequency f = c x fs / WaveSize */

rl = D2; /* Nomi nal Center Tap Delay Time */

r2 = dnmi 6, nb); /* get next value in wavetable */

r4 = dm(sweep_w dt h); /* store to nenory for chorus routine */

r2 = ashift r2 by r4; /* control anount of variable delay via sweep_wi dth */

r3 =rl1%*r2 (SSFR); /* scale Nominal Delay Tinme by a fractional value */

dn(si ne_val ue) = r3; /* save for flange routine */

rti(db);

bit clr nodel SRRFL; /* disabl e secondary regi ster set */

nop; /* 1 cycle latency to wite to nodel register */
/* _____________________________________________________________________________________________ */
/* */
/* Digital Flanger - process right channel only */
/* */
/* _____________________________________________________________________________________________ */
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Fl anger _Effect:
rl5 = DM Ri ght _Channel ) ; /* get x-input, right channel */

r3 = dm(si ne_val ue);
ri4 = D2,
r4 =rl14 - r3;

calculate time-varing delay deviation */
nomi nal tap center delay */
rd =d=D2 - D2 * sin(2*pi *fc*t) */

~——
* % ok

/* r4d noww ||l be used to set nR2 register to fetch tinme varying del ayed sanple */
nm = r4; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

r4 = -ré4; /* negate to get back to where we were */

m = r4; /* used to post nodify back to current sanple */
r6 = dnmi2, n2); /* get tine-varying del ayed sanple */

/* r8 will be used to get Nomi nal Tap Center del ayed sanple for flange feedback */

m = D2; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

m = -D2; /* negate to get back to where we were */

r8 = dn(i2, n2); /* get nominal del ayed sanple, postnodify back to current sanple */
/* crank out difference equati */

r5 = ao; input gain */

mf =r15 * r5 (SSF); nrf = a0 * x */

r9 = dm(f eedback_gai n); gain for feedback of nominal tap center*/

~———=-0
* ok kK k3

mf =mf +r8 * r9 (SSF); nmf = a0 * x - af * sNomi nal */

rl2 = nrif; save for input to flanger delay line */

r7 = al; /* delay line gain */

mf =mf +r7 * r6 (SSFR); /* mf =a0 * x +a* sl - af * sNonmnal */
mf = SAT mrf; /* saturate if necessary */

rl0 = nrif; /* flanged result in r10 */

/* put 'input mnus feedback' sanple fromr12 into tap-0 of delay line */
/* and backshift circular delay-line buffer pointer */
dan(i 2, -1) = r12;

/* send flanged result to both left and right output channels */
DM Left _Channel ) =r 10;
DM R ght _Channel ) =r 10;

rts;
/* ______________________________________________________________________________ */
/* */
/* I RQL Pushbutton Interrupt Service Routine */
/* */
/* This routine allows the user to nodify flanger width and rate presets. */
/* */
/* Default before 1st |RQ push: */
/* 1st Pushbutton Press: */
/* 2nd Pushbutton Press: */
/* 3rd Pushbutton Press: */
/* 4t h Pushbutton Press: */
/* 5th Pushbutton Press: */
/* 6t h Pushbutton Press: */
/* 7th Pushbutton Press: Reverts back to 1st Pushbutton Press */
/* */
/* The pushbutton setting is shown by the active LED setting, all others are */
/* ________________________________________________________________________________ */

change_depth_rate_w dt h:

bit set nodel SRRFH, /* enabl e background register file */

NOP; /* 1 CYCLE LATENCY FOR WRI TI NG TO MODE1 REG SER! !
ri3 = 6; /* nunber of presets */

rl5 = DM I RQL_counter); /* get preset count */

rl5 = r15 + 1, /* increnent preset */

conp (r15, r13);

if ge ri5 = r15 - r15; /* reset to zero */

DM | RQL_counter) = r15; /* save preset count */

rl0 = pass r1i5; /* get preset node */

if eq junp delay_settings_2; /* check for count == 0 */
r10 = r10 - 1;

if eq junp delay_settings_3; /* check for count == 1 */

*/
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rl0 =r10 - 1;

if eq junp delay_settings_4; /* check for count == 3 */

ri0o = r10 - 1,

if eq junp delay_settings_5; /* check for count == 4 */

ri0 = r10 - 1,

if eq junp delay_settings_6; /* check for count == 5 */
del ay_settings_1: /* count therefore, is ==

ri4 = 1; DM sweep_rate) = rl4;

ri4 = 0; DM sweep_w dt h) = r14;

bit set ustatl Ox3E;
bit clr ustatl 0x01;
dn( | OSTAT) =ust at 1;

j ump done;

del ay_settings_2:
riq4 = 2,
ri4 = 0,
bit set ustatl Ox3D
bit clr ustatl 0x02;
dn( | OSTAT) =ust at 1,
j ump done;

del ay_settings_3:
ri4 = 3,
ri4 = -1;
bit set ustatl O0x3B;
bit clr ustatl 0x04;
dn( | OSTAT) =ust at 1,
j ump done;

del ay_settings_4:
rl4 = 4;
rl4 = -1,
bit set ustatl 0x37;
bit clr ustatl 0xO08;
dn( | OSTAT) =ust at 1;
j ump done;

del ay_settings_5:
ri4 =5,
ri4 = -2;
bit set ustatl Ox2F,
bit clr ustatl 0x10;
dn( | OSTAT) =ust at 1,
j ump done;

del ay_settings_6:
rl4 = 6;
ri4 = 0,
bit set ustatl Ox1F;
bit clr ustatl 0x20;
dn( | OSTAT) =ust at 1;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

done:
rti(db);
bit clr nodel SRRFH,
nop;
o
/* | RQ@ Pushbutton Interrupt Service Routine
/*
/* Intensifies the effect of the flanged sound to sound nore netallic.
/* Negati ve Feedback subtracts (inverts) the output of the fixed tap center output
/* Positive Feedback adds the fixed tap center output of the flange delay line
/*
/* Default before 1st |IRQ push: Delay = 20.83 nsec
/* 1st Pushbutton Press: Feedback Setting #1 -
/* 2nd Pushbutton Press: Feedback Setting #2 -
/* 3rd Pushbutton Press: Feedback Setting #3 -
/* 4t h Pushbutton Press: Feedback Setting #4 -
/* 5th Pushbutton Press: Feedback Setting #4 -
/* 6t h Pushbutton Press: Feedback Setting #4 -
/* 7th Pushbutton Press: Reverts back to 1st Pushbutton Press
/*

/* turn on Flag4 LED */

/* turn

/* turn

/* turn

/* turn

/* turn

on Fl ag5

on Fl ag6

on Fl ag7

on Fl ag8

on Fl ag9

LED */

LED */

LED */

LED */

LED */

6 if you are here */

/* switch back to prinmary register set */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
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/* The pushbutton setting is shown by the inactive LED setting,

/* (reverse of I RQL LED settings,
*

sel ect _fl ange_f eedback_gai n:

all others are on */
whi ch show lit LED for setting #) */
____________________________________________ * [

bit set nodel SRRFH, /* enabl e background register file */
NOP; /* 1 CYCLE LATENCY FOR WRI TI NG TO MODE1 REQ SER!!
ri3 = 6; /* nunber of presets */

rl5 = DM | RQ2_counter); /* get preset count */

rl5 = r15 + 1, /* increnent preset */

conp (r15, r13);

if ge ri5 = r15 - r15; /* reset to zero */

DM | RQ2_counter) = r15; /* save preset count */

r10 = pass r15; /* get preset node */

if eq junp feedback_settings_2; /* check for count == 0 */

r10 = r10 - 1;

if eq junp feedback_settings_3; /* check for count == 1 */

r10 = r10 - 1;

if eq junp feedback_settings_4; /* check for count == 3 */

r10 = r10 - 1;

if eq junp feedback_settings_5; /* check for count == 4 */

r10 = r10 - 1;

if eq junp feedback_settings_6; /* check for count == 4 */

f eedback_settings_1:
/* no feedback */
r14 = 0x00000000;
bit clr ustatl Ox3E;
bit set ustatl 0x01;
dn( | OSTAT) =ust at 1;
junp exit;

DM f eedback_gai

f eedback_settings_2:
/* add sone snall
rl4 = 0x20000000;
bit clr ustatl 0x3D;
bit set ustatl 0x02;
dn( | OSTAT) =ust at 1;
junp exit;

positive feedback */
DM f eedback_gai

f eedback_settings_3:
/* add sone snall
rl4 = Ox5A82799A;
bit clr ustatl 0x3B;
bit set ustatl 0x04;
dn( | OSTAT) =ust at 1;
junp exit;

negative feedback */
DM f eedback_gai

f eedback_settings_4:

/* count therefore, is == 5 if you are here */

n) = rl4;

/* turn off Flag4 LED */

n) = rl4;

/* turn off Flag5 LED */

n) = rl4;

/* turn off Flag6 LED */

/* add a medi um amount of positive feedback */

rl4 = 0xA57D8666;
bit clr ustatl 0x37;
bit set ustatl 0x08;
dn( | OSTAT) =ust at 1;
junp exit;

DM f eedback_gai

f eedback_settings_5:
r14 = Ox67FFFFFF;
bit clr ustatl Ox2F;
bit set ustatl 0x10;
dn( | OSTAT) =ust at 1;
jump exit;

DM f eedback_gai

f eedback_settings_6:
r14 = 0x90000000;
bit clr ustatl Ox1F;
bit set ustatl 0x20;
dn( | OSTAT) =ust at 1;

DM f eedback_gai

exit:
rti(db);
bit clr nodel SRRFH,
nop;

. endseg;

n) = rl4;

/* turn off Flag7 LED */

n) = rl4;

/* turn off Flag8 LED */

n) = rl4;

/* turn off Flag9 LED */

/* switch back to prinmary register set */

*/
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3.3.2.2 Chorus Effect

Chorusing is used to “thicken” sounds. Thistime delay algorithm (between 15 and 35 milliseconds) is designed to duplicate
the effect that occurs when many musicians play the same instrument and same music part simultaneously. Musicians are
usually synchronized with one another, but there are always slight differences in timing, volume, and pitch between each
instrument playing the same musical notes. This chorus effect can be re-created digitally with avariable delay line rotating
around the tap center, adding the time-varying delayed result together with the input signal.

Using this digitally recreated effect, a 6-string guitar can also be ‘ chorused’ to sound more like a 12-string guitar. Vocals can
be thickened to sound like more than one musician is singing.

The chorus agorithm is similar to flanging, using the same difference equation, except the delay timeislonger. With alonger
delay-line, the comb filtering is brought down to the fundamental frequency and lower order harmonics (Figure 70). Figure
67 shows the structure of a chorus effect simulating 2 instruments [2, 6].

Figure 67. Implementation of a Chorus Effect Figure 68. Chorus Effect Simulating
Simulating 2 Instruments 3 Instruments
LFO Z‘ N, T Dasx(n - dy(n))
* Modulating Tap l a
" Center of Delay Line
" Nviathe LFO LFO2
T az2x(n - d(n)) °N T ax(n - dy(n))
x(n) 7N BD——@—>ym  x) Z" D—®—yin)
a2
Delay LFO1
Line Gain ax(n)
N 1/
> D —
al alx(n) a, Direct Gain
. Di
N = variable delay d(n) G”a?f]t Can use same LFO table with pointers 90 degrees apart.

The difference equation is for Figure 67 is:
y(n)=a;x(n)+a,x(n- d(n))
Some example difference equations for smulating 2 or 3 musicians are shown below.

An example fixed point fractional implementation is:

() = Zx() +X(n- d()

Scaling each signal by %2 will equally mix both signal to around the same volume while ensuring no overflow when the signals
are added.

To implement a chorus of 3 instruments, 2 variable delay lines can be used (Figure 68). Use a scaling factor of 1/3 to prevent
overflow with fixed point math while mixing all three signals with equivalent gain.

() = 2x(n) + 2x(n- dy(m)+2X(n- dy(n)
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Another Implementation Example as described by Orfanidig[2] is:
1
ym) = S[x() + a,m)x(n-d1(n) + a,(n)x(n- d2(n)
where the gain coefficients al(n) and a2(n) can be alow-frequency random number with unity mean.

The small variationsin the delay time can be introduced by arandom LFO at around 3 Hz. A low frequency random LFO
lookup table (for example, Figure 69) can be used to recreate the random variations of the musicians, although the circular
buffer will till be periodic.

Figure 69. Figure 70.
Example 4K Random LFO Wavetable Storage Chorus Result of Adding a Variable Delayed
: \; Input Signal x(m)
-
7
0x0400 \\\
! < 0x00000000
7 1 DG_ ; 15
: Y Signal with vari
: f
0x0800 X
B N —
<—— OX7FFFFFFF
. —
——
0x0C00 ——
: (& ~——— 0x80000000
N
S
- S
Divide by 2 to keep SN\
values between: ) )
OXOFFF Z ~<—— 0x00000000

-0.5<d(n)<0.5

A result of an increasing slope in the LFO will cause the pitch to be lower. A negative slop will result in a pitch increase.
The LFO value in the table can be updated on a sample basis via the chorus processing routine, or the wavetable look-up can
be modified using the DSP’ s on-chip programmable timer. The varying delay d(n) will be updated using the following
equation:

d(n) = D05 + LFO()), or d(n) = D(05 +v(n))

The signal v(n) is described by Orfanidis[2] as a zero-mean low-frequency random signal varying between [-0.5,0.5]. An
easy technique to ensure fixed point signals stay within this range would be to take a lookup table with fractional numbers
ranging from -1 to 0.9999 and dividing each lookup value by 2.
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Figure 71.
Chorus Delay Parameters

Delay (sec)

Maximum
Sweep
Depth

Nominail_ Center
Tap Delay

’ - -

t

-05D<d(n)<05D
Maximum Sweep Depth < +/- 0.5D, or between 0 <d(n) < Dc
Sweep Rate - speed of wavetable playback, infuences pitch change

Chorus Parameters
Like the flanger, most units offer “Modulation” (or Rate) and “Depth” controls.

Depth ( or Delay)
controls the length of the delay line, allowing a user to change the length on-the-fly.

Sweep Depth
Determines how much the time offset changes during an LFO cycle. 1t combined with the delay line value for atotal delay
used to process the signal.

Modulation
The variationsin delay time will be introduced by alow-frequency oscillator (L FO). This frequency can usually be
controlled with the “Sweep Rate” parameter. Usually, the LFO consists of alow frequency random signal. When the
waveform is at the largest value, variable delay that results will be the maximum delay possible. A result of an increasing
dlopein the LFO will cause the pitch to be lower. A negative slop will result in a pitch increase.

Sine and Triangle waves can be used to vary the delay time. One easy method for generating the modulation value is through
awavetable lookup. The value in the table can be modified on a sample basis via the chorus routine, or the lookup can be
determined using the DSP’ s on-chip programmable timer. When the timer count expired and the DSP vectors off to the
Timer Interrupt Service Routine, the modulation value can then be updated with the next value in the waveform buffer. The
LFO can be repeated continuously by making the wavetable a circular buffer. Using a cosine wavetable, the varying delay
d(n) will be updated using the following equation:

d(n) = D(0.5 + LFO(2p nfyy,,))

where D =Delay Line Length
Fdelay = Frequency of the LFO with a period of 2 Pi of the LFO
n = the nth location in the wavetable lookup

The small variations in the time delays and amplitudes can also be simulated by varying them randomly at avery low
frequency around 3 Hz.

d(n) =D(0.5 +v(n))

where,
v(n)= current variable delay value from the random LFO generator

or,
d(n) =D( 0.5 + random_LFO_number(n))
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The signal v(n) as described by Orfanidis[2] is a zero-mean low-frequency random signal varying between [-0.5,0.5]. An
easy technique to ensure fixed point signals stay within this range would be to take a lookup table with fractional numbers
ranging from -1 to 0.9999 and dividing each lookup value by 2. This can easily be done with an arithmetic shift instruction
shifting the input to the right by 1 binary place to divide the lookup value by 2.

Stereo Chorus

This effect is achieved by panning the chorus result on back and forth on both stereo channels, creating the impression of
movement of the sound in space. The effect can also be created by sending the unaltered input signal on one output stereo
channel and the chorused result to the opposite channel.

Example Stereo Chorus Effect

t

agx(n - dy(n))
7N T[>—» Ya(n)
a
LFO 2

t

aX(n - dy(n))
x(n) A 1 D——@— v
2

N a;x(n)
| Vg

a, Direct Gain

LFO 1

Can use same LFO table with pointers 90 degrees apart.

Figure 72.

Flanging/Chorusing Similarities and Differences

Both Flanging and Chorusing use variable buffers to change the time delay on the fly. Both effects achieve these variationsin
delay time by using alow frequency oscillator (LFO). This parameter is available on commercial units as the “ sweep rate”.
The “sweep-depth” parameter is what determines the amount of delay in the sweep period. The greater the depth, the farther
the peaks and dips of the phase cancellation.

The key difference between the two effects is the flanger found in many commercia units changes the delay using alow
frequency sine-wave generator, where the chorus usually changes the delay using a low-frequency random noise generator. In
addition, the flanger modulates the length of the delay from 0 to D, while the chorus modulates the delay from ??7?? ( expand
further)
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Example Stereo Chorus Implementation of 3 instruments Using the ADSP-21065L

R

STEREO_CHORUS FEEDBACK. ASM - stereo chorusing effect sinmulating 3 voices/nusical instrunments
(SPORT1 Rx | SR count & update nethod - delay cal cul ati on deternined by a counter
incremented in the serial port's audio processing routine)

Chorus Effect as Described by:
1. Jon Dattorro in "Effect Design Part 2 - Del ay-Line Mdul ati on and Chorus,"
J. Audio Eng. Socienty, Vol. 45, No. 10, Cctober 1997

2. Eq(8.2.20) of Introduction to Signal Processing.
By Sophocles J. Ofanidis - 1996, Prentice-Hall
| SBN 0- 13-209172-0

This version uses Linear Interpolation (versus Al pass Interpolation) along with
integer (not fractional) sanple delay. Since the sanple rate is 48K, for nost

| ower bandwi dth signals, Linear Interpolation is probably adequate for nost

i nstruments.

I/ O equations:

yL(n) = 1.0 * x(n) + 0.7071*x(n - di(n)) - 0.7071*x(n - D1/2)
yR(n) = 1.0 * x(n) + 0.7071*x(n - d2(n)) - 0.7071*x(n - D2/2)
x(n) ----- (O R ) S >0 ------- > yL(n)
- | n 0.7071 N
I / I
I / _ I
| | | Rotating Tap |
| | ZN(-D1) | Cent er |
[----------- >| [----------- [ >--]
| di(n) | 0.7071
I I
I I
ro
/ | Fixed Tap
/ | Cent er
f eedbackl | DL/ 2
------------- N |
(O R ) S >0 ------- > yR(n)
- | n 0.7071 N
I / I
I / _ I
| | Rotating Tap |
| | ZN(-D2) | Cent er |
[----------- >| [----------- [ >--]
| d2(n) | 0.7071
I I
I I
ro
/ | Fixed Tap
/ | Cent er
f eedback2 | D2/ 2
------------- N |

What the Chorusing Effect does?

Chorusing sinmulates the effect of nmultiple instrunents/voices playing the sane nusi cal
arrangenent at the sane tinme. |n actual concert situations, nusicians are usually
synchroni zed together, except for snmall variations in anplitude and ti m ng.

This effect is achieved by allowing the time delay (and al so anplitude) to vary
randomy or sinusoudally in tine by using a random nunber generation routine or sine
wavet abl e.

For each input sanple, the sanple processing al gorithm does the follow ng:
store input sanple sO to 2 delay |lines
nmodi fy wavet abl e(when necessary)
generated variable delay, d = D* (0.5 + randnun(fc*t))
sl = sanplel = tap(D, wl, pl, d)
s2 = sanple2 = tap(D/ 2)
y = a0 * sO + al * s1 - af * s2
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Devel oped for the 21065L EZ-LAB Eval uation Board

********************************************************************************************/

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldef s. h"

. GLOBAL chorus_effect;

. GLOBAL I nit_Chorus_Buffers;

. GLOBAL change_depth_rate_w dt h;
. GLOBAL sel ect _f eedback_gai n;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

/* Chorus Control Paraneters */

#defi ne aOL OX7FFFFFFF /* a0 = 0.99999999, left input gain */
#define allL 0x5A82799A /* al = 0.707106781, left output gain of tapped del ay
line */
#def i ne aOR OX7FFFFFFF /* a0 = 0.99999999, right input gain */
#defi ne alR 0x5A82799A /* al = 0.707106781, |eft output gain of tapped del ay
line */
#define aflL 0x5A82799A /* a0 = 0.707106781, negative feedback gain */
#define afR 0x5A82799A /* a0 = 0.707106781, negative feedback gain */
/* = OxA57D8666 for positive feedback, - 0.707106781 */
#define D1 870 /* Depth, or TD = D1/fs = 870/48000 = 18 nsec */
#define D2 1120 /* Depth, or TD = D2/fs = 1120/ 48000 = 23 nsec */
#defi ne DepthL D1 /* DepthL is equivalent to tine delay of signal, or
d-line 1 size */
#defi ne Dept hR D2 /* DepthR is equivalent to tine delay of signal, or
d-line 2 size */
#define L_Del _TapCenter Dept hL/ 2 /* D1/2, used for add & subtracting delay from
nom nal tap center */
#define R _Del _TapCenter Dept hR/ 2 /* D2/2, used for add & subtracting delay from
nom nal tap center */
#def i ne WaveSi ze 4000 /* semi -randont si nusoi dal wavet abl e size*/

/* chorus control paraneters */
#define c 1 /* wavetabl e signal freq fcl = cl*(update tine)*WaveSize = 4 Hz */
#define chorus_width -2 /* Enter # from1l to 31. Do not enter O, to keep #s +/- 0.5 */

#define nodul ati on_rate 80 /* Update wavetabl e pointer for delay calc every 40 interrupts */

/* sine wavetabl e has a rate of nodul ation of about 0.15 Hz */

/* playing with the width, nodul ation rate, depth size and feedback affects
the intensity of the chorus'ed sound */
.segnment /dm dnthor us;
.var I RQL_counter = 0x00000004;
.var | RQ2_counter = 0x00000004;
.var f eedback_gai nL = aflL;
.var f eedback_gai nR = af R
.var sweep_rate = nodul ati on_rate;
.var sweep_w dt hL = chorus_wi dt h; /* controls width of |eft sweep, ranges from-1to - 15 */
.var sweep_w dt hR = chorus_w dt h; /* controls width of right sweep, ranges from-1to - 15 */
.var wl[ DepthL + 1]; /* delay-line buffer 1, max delay = D1 */
.var w2[ Dept hR + 1]; /* delay-line buffer 2, max delay = D2 */
.var excur si on_val uel; /* wavet abl e of fset value for delay cal culation */
.var excur si on_val ueR; /* wavet abl e of fset value for delay cal culation */
.var randon{WaveSi ze] ="si net bl . dat"; /* store one period of the wavetable */
/* mni mum frequency of table =

(freq of delay update)/WaveSize = 8/4 = 2 Hz */
.var wavet bl _counter = 0x00000000;
. endseg;
[* ceeeeeee e PROGRAM MEMORY CODE--------------------"-"------------ */

. segment /pm pm code;

I nit_Chorus_Buffers:

B2 = wl; L2 = @v,;

/* left delay-line buffer pointer and | ength */




m = 1,

LCNTR = L2; /* clear left delay line buffer to zero */
DO clrDii neL UNTIL LCE;
clrDineL: dm(i 2, nmR2) = 0;
B3 = w2; L3 = @&; /* right delay-line buffer pointer and | ength */
m = 1,
LCNTR = L3; /* clear right delay line buffer to zero */
DO clrDi i neR UNTI L LCE;
clrDineR dm(i 3, nmB) = 0;
B6 = random /* left channel pointer for signal generator */
L6 = @andom /* get size of table | ookup */
B7 = random /* right channel pointer for signal generator */
17 = random + 1000; /* offset 90 degrees so nodul ators in quadradure phase */
L7 = @andom /* get size of table | ookup */
RTS;
/* ________________________________________________________________________________ */
/* */
/* Di gital Chorus Routine - process both channels together */
/* */
/* _______________________________________________________________________________ */

chorus_effect:
/* conbine both left and right

nput sanples together into 1 signal */

i

r0 = dn(Left_Channel); /* left input sanple */

rl = dm R ght _Channel); /* right input sanple */

r0 = ashift r0 by -1; /* scale signal by 1/2 for equal mx */
rl = ashift rl by -1, /* scale signal by 1/2 for equal mx */
rl5 =r0 + rli; [* 1/2xL(n) + 1/2 xR(n) */

test _wav_updat e:
/* update sine value from !l ookup table? Update every 80 SPORT rx interrupts */
/* sweep frequency = 80 * ¢ * 4000 / fs = 96000 /48k = .15 sec */

rll = DM sweep_rate); /* count up to 80 interrupts (default) */
rl10 = DM wavet bl _counter); /* get last count from nenory */
ri0 = r10 + 1; * increment preset */

/
conmp (r10, r11); /* conpare current count to max count */

if ge r10 = r10 - r10; /* if count equals nax, reset to zero and start over */
DM wavet bl _counter) = r10; /* save updated count */

rl2 = pass r10; /* test for wave count 0? */
if eq junp update_wavetbl _ptrs;

/* if you are here, reuse sanme random val ues for now */
junp do_stereo_chorus;

/* if necessary, calculate updated pointer to wavetables */
updat e_wavet bl _ptrs:
6 = c

= ¢; /* desired increnent ¢ - frequency f = c x fs / D */
rl = DepthL; /* Total Delay Time */
r2 = dnmi 6, nb); /* get next value in wavetable */
r4 = dm(sweep_w dt hL);
r2 = ashift r2 by r4; /* divide by at least 2 to keep 1.31 #s between 0.5 and -0.5 */
r3 =rl1%*r2 (SSFR); /* multiply Delay 1 by a fractional value fromO to 0.5 */

dn{ excursion_val uelL) = r3;

nv = c; /* desired increnent ¢ - frequency f = c x fs / D */

rl = DepthR /* Total Delay Time */

r2 = dnmi 6, nb); /* get next value in wavetable */

r4 = dm(sweep_w dt hR);

r2 = ashift r2 by r4; /* divide by at least 2 to keep 1.31 #s between 0.5 and -0.5 */
r3 =rl1%*r2 (SSFR); /* multiply Delay 1 by a fractional value fromO to 0.5 */

dn{ excursion_val ueR) = r3;

do_stereo_chorus:

r3 = dm(excursion_val uel); /* calculate time-varing delay for 2nd voice */
rl = L_Del _TapCenter; /* center tap for delay line */
rd =rl +r3; /* r4a = d(n) =D1/2 + D1 * randon(fc*t) */
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process_| eft_ch:

/* r4d noww ||l be used to set nR2 register to fetch tinme varying del ayed sanple */

nm = r4; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

r4 = -ré4; /* negate to get back to where we were */

m = r4,; /* used to post nodify back to current sanple */
r9 = dn(i2, n2); /* get tine-varying del ayed sanple 1 */

/* r8 will be used to get Nomi nal Tap Center del ayed sanple for flange feedback */

m2 = L_Del _TapCenter; tap outputs of circular delay line */

rmdl fy(i2, nR); go to del ayed sanple */

114 -L_Del _TapCenter; negate to get back to where we were */

dn(i 2, nR); get del ayed sanple, postnodify back to current

~——
L

r7

/* crank out difference equation */
r8 = aoL;

mf =r8 * r15 (SSF);

r8 = dm(feedback_gainL);

mf =mf - r8 * r7 (SSF);

left input gain */
nrf = a0OL * x-input */

left gain for feedback of nominal tap center*/
mf =a0L * x - afL * sNomnalL */

~———
* % ok ok *

ri2 nr 1f ; save for input to chorus left delay line */
r8 = all; /* left delay line output gain */

mf =mf +r8 * r9 (SSFR); /* mf = a0L * xL + alL * s1L - afL * sNomnallL
mf = SAT mrf; /* saturate result if necessary */

r10 = nrif; /* chorus result in r10 */

/* put 'input mnus feedback' sanple fromr12 into tap-0 of delay line */
/* and backshift circular delay-line buffer pointer */
dan(i 2, -1) = r12;

/* wite chorus'ed output sanple to | eft output channel */

dn( Left _Channel) = r10; /* left output sanple */
process_right _ch:
r3 = dm(excursion_val ueR); /* calculate time-varing delay for 2nd voice */
rl = R Del _TapCenter; /* center tap for delay line */
rd =rl +r3; /* r4 = d(n) = D2/2 + D2 * randon(fc*t) */
/* r4 noww |l be used to set nB register to fetch tine varying del ayed sanple */
B = r4; /* tap outputs of circular delay line */
modi fy(i3, nB); /* go to del ayed sanple */
rd4 = -r4; /* negate to get back to where we were */
B8 = r4; /* used to post nodify back to current sanple */
r9 = dmii3, nB); /* get time-varying delayed sanple 1 */
/* r8 will be used to get Nomi nal Tap Center del ayed sanple for chorus feedback */

n8 = R Del _TapCenter;
modi fy(i3, nB);

nB3 -R _Del _TapCenter;
dm(i 3, nB);

* tap outputs of circular delay line */

go to del ayed sanple */

negate to get back to where we were */

get del ayed sanpl e, postnodify back to current

~_~——
* % ok

r7

/* crank out difference equation */
r8 = aOR
mf =r8 * r15 (SSF);

left input gain */
mf = aOR * x-input */

~————
* ok ok Ok *

r8 = dn(feedback_gai nR); gain for feedback of nom nal tap center*/
mf =nmf - r8 * r7 (SSF); mf = aOR* xR - afR* sNomnal R */

rl2 = nrif; save for input to chorus right delay line */
r8 = alR; /* right delay line output gain */

mf =mf +r8 * r9 (SSFR); /* mf = aOR * x + alR * s1R - af * sNominal R
nrf = SAT mrf; /* saturate result if necessary */

rl0 = nrif; /* chorus result in rl10 */

/* put "input mnus feedback' sanple fromrl2 into tap-0 of delay line */
/* and backshift circular delay-line buffer pointer */
dm(i 3, -1) = r12;

/* wite chorus'ed output sanple to right output channel */
dm( Ri ght _Channel) = r10; /* right output sanple */

rts;

sanpl e */

*/

sanpl e */

*/
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3.3.2.3 Vibrato

The vibrato effect that duplicates 'vibrato' in a singer's voice while sustaining a note, a musician bending a stringed
instrument, or a guitarist using the guitars ‘whammy' bar. This effect is achieved by evenly modulating the pitch of the signal.
The sound that is produced can vary from a slight enhancement to a more extreme variation. It is similar to a guitarist moving
the 'whammy' bar, or aviolinist creating vibrato with cyclical movement of the playing hand. Some effects units offered
vibrato aswell asatremolo. However, the effect is more often seen on chorus effects units.

The dlight change in pitch can be achieved (with a modified version of the chorus effect) by varying the depth with enough
modulation to produce a pitch oscillation. Thisis accomplished by changing the modify value of the delay-line pointer on-
the-fly, and the value chosen is determined by alookup table. Thisresultsin the interpolation/decimation of the stored
samples viarotating the center tap of the delay line. The stored 'history' of samples are thus played back at a slower, or faster
rate, causing a slight change in pitch.

To obtain an even variation in the pitch modulation, the delay line is modified using a sine wavetable. Note that thisa
stripped down of the chorus effect, in that the direct signal is not mixed with the delay-line output.

This effect is often confused with ‘tremol o', where the amplitude is varied by a L FO waveform. The tremolo and vibrato can
both be combined together with atime-varying L PF to produce the effect produced by a rotating speaker (commonly referred
to a'Ledie’ Rotating Speaker Emulation). An example rotating speaker emulation effect is also shown in this section.

Figure 73.
Implementation of the Vibrato Effect

Sine Table

Tap Center of Delay
Line Modulates by
the Sine Wavetable

T ax(n - d(n))
X(n) —— Z-N 'l> y(n)

1 a
Gain

N = variable delay d(n)

Can use chorus or flanger algorithm, but no mix of input signal is required

Example Vibrato Implementation Using The ADSP-21065L

______________________________________________________________________________________________ * [

/* */
/* Digital Vibrato Routine - process both channel s together */
/* */
/* ______________________________________________________________________________________________ */
vibrato_effect:

A con‘ol ne both left and right input sanples together into 1 signal */

r0 = dm(Left_Channel); /* left input sanple */

rl = dnm(R ght _Channel); /* right input sanple */

r0 = ashift r0 by -1, /* scale signal by 1/2 for equal mx */

rl = ashift rl by -1; /* scale signal by 1/2 for equal mx */

r2 =r0 +ri,; [* 1/2xL(n) + 1/2 xR(n) */
t est _si ne_updat e:

/* update sine value from !l ookup table? Update every 12 SPORT rx interrupts */

/* sweep rate = 12 * sin_inc * 4000 / fs = 48000 /48k = 1 sec */

rll = DM nodul ation_rate); /* count up to 24 interrupts */

r10 = DM wavet bl _counter); /* get last count from menory */

rl0 = r10 + 1, /* increnent preset */

conp (r10, r11); /* conpare current count to max count */

if ge r10 = r10 - r10; /* if count equals nmax, reset to zero and start over */

DM wavet bl _counter) = r10; /* save updated count */
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rl2 = pass r10; /* test for wave count 0? */
if eq junp update_sinetbl _ptr;

junp do_vi brat o; /* if you are here, reuse sane sine value for now */
/* dm(sine_val ue) remai ns unchanged */

/* if necessary, calculate updated pointer to sine wavetable */
updat e_si net bl _ptr:

m6 = dn(sin_inc); /* desired increment sin_inc - f =sin_inc x fs / D */
ré = b

r7 = dmii 6, nb);

r4 = dn(pitch_bend);

r7 = ashift r7 by r4; /* divide by 2 to keep #s between 0.5 and -0.5 */

r8 =r6 * r7 (SSFR /* delay nultiplication factor */

dn(si ne_val ue) = r8; /* save to current sine value to be reused above */

do_vi br at o

= dn(si ne_val ue); /* get previous or newy updated sine value */
rl = D2; /* get nominal tap center delay */
rd =rl +r3; /* =d(n) =D2 + D* sin(fc*t) */

/* r4 noww |l be used to set nR register to fetch tine varying del ayed sanple */

m = r4; /* set tap valud for output of circular delay line */

modi fy(i2, nR); /* go to del ayed sanpl e address */

rd4 = -r4; /* negate to get back to where we were */

m = r4; /* set up to go back to current nem|location after access */
r10 = dmi 2, nR); /* get del ayed sanple */

/* put input sanple fromr2 into tap-0 of delay |lines */
/* and backshift pointer & update circular delay-line buffer*/
dm(i 2, -1) =r2;

/* wite vibrato output sanple to AD1819A DAC channels */

dn( Left_Channel) = r10; /* left output sanple */
dm( Ri ght _Channel) = r10; /* right output sanple */
rts;

21065L Rotating Speaker Emulation Implementation (Vibrato & Tremolo Combo)

* % % RO'I'ATI ,\G_SPEAKER.ASM khkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhkhhkhkhkhkhkhkhkhkhhkhhkhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*x*%x

AD1819A/ ADSP- 21065L EZLAB Rot ating Speaker Enul ation Effect Program
Devel oped usi ng ADSP-21065L EZ- LAB Eval uation Platform

I/0 Equation: y(n) = [x(n)*sin(2*pi*fc*t)] convolve [ x(n-d(n)) ]

|
I [
| |/ Variable
/ Rotating Tap / Cut of f
/ Cent er Freq

sin(2*Pl *fc*t) / /
| / I
[ | | | |
Y | ZN(-D) | |  LPF |
x(n) -------- >0 ----mmeo-e >| [------- | H(z) |--->y(n)
X I d(n) | |
|

What the rotating speaker effect does?

A popul ar effect used on keyboards and Hammond organs. This effect
consists of a conbination of the trenplo and vibrato effects, conbined
a lowpass filter with a variable cutoff frequency. This conbination
simul at es what was done by audi o engi neers who woul d actual |y produce
this effect by rotating a speaker cabinet. The resulting sound heard
by the ears is a cyclical increase/decrease in volunme, a doppler effect
fromthe speaker rotating, and a cyclical drop in high frequencies
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* whenever the speaker is facing away fromthe |istener. *

* *
*******************************************************************************************/

/* ADSP-21065L System Regi ster bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldefs. h"

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

. GLOBAL Init_Tremol o_Vi brato_Buffers;
. GLOBAL Rot at i ng_Speaker _Ef fect;

. GLOBAL change_speaker _rotate_rate;

. GLOBAL sel ect _trenol o_effect;

.segnent /dm r ot speak;

#defi ne WaveTabl eSi ze 4000 /* sinusoidal wavetable, 1 period in table of 4000 sine wave
el ements */
#define D 2000 /* Depth, or TD = D/fs = 1000/ 48000 = 20. 83 nsec */
/* increasing depth size D increases pitch variation */
#define Depth D /* Depth is equivalent to tine delay of a signal, or delay-line size */
#define D2 Dept h/ 2 /* D2, used for addig & subtracting delay fromtap center */
.var I RQL_counter = 0x00000003;
.var I RQ2_counter = 0x00000000;

.var wavet bl _counter = 0x00000000;

.var Effect _Ctrl = 0x00000001; /* memory flag that determnmines which trenolo routine executes */
.var pitch_bend = -6; /* Enter # from-1to -15. Do not enter 0.*/
/* -1to -5 - large pitch bend*/
/* -6 to -10 - nedium pitch bend */
/* -11 to -15 - small pitch bend */
.var sin_inc = 2; /* wavetabl e signal frequency ftable = sin_inc * fs = ? Hz */
.var nmodul ation_rate = 3; /* controls how fast the wavetable is updated in the SPORT1 rx ISR
*/
.var si ne_val ue; /* used for tremolo control */
.var excur si on_val ue; /* used for vibrato delay offset calculation */
.var si ne[ WaveTabl eSi ze] = "sinetbl.dat";
.var w D+ 1]; /* delay-line buffer, max delay = D */
. endseg;
/* ___________________________________________________________________________ */
. segnent /pm pm code;
/* __________________________________________________________________________________ */
Init_Tremol o_Vi brato_Buffers:
B2 =w L2 = @y /* delay-line buffer pointer and | ength */
e = 1,
LCNTR = L2; /* clear delay line buffer to zero */
DO clrDine UNTIL LCE;
clrDine: dm(i 2, nmR2) = 0;
B6 = si ne; /* pointer for signal generator */
L6 = @i ne; /* get size of sine table | ookup */
RTS;

/*******************************************************************************************

ROTATI NG SPEAKER (Vi brato & Trenol o Conbo) AUDI O EFFECT

********************************************************************************************/

Rot at i ng_Speaker _Effect:
rl DM Left _Channel ) ;

rl = ashift rl by -1;
r2 = DM R ght _Channel ) ;
r2 = ashift r2 by -1;
r3 =r2 +rl,
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/* generate sine value fromwavetabl e generator if necessary, where r4 = sin(2*pi*fc*t) */
test _wavt bl _updat e:

/* update sine value from | ookup table? Update every 80 SPORT rx interrupts */

/* sweep frequency = 80 * ¢ * 4000 / fs = 96000 /48k = .15 sec */

rll = DM nodul ation_rate); count up to 80 interrupts */
r10 = DM wavet bl _counter); get last count from nenory */
rl0 = r10 + 1, increment preset */

conp (r10, r11);
if ge r10 = r10 - r10;
DM wavet bl _counter) = r10;

conpare current count to max count */
if count equals max, reset to zero and start over */
save updated count */

~—————
* % ok ok Ok F

rl2 = pass r10; /* test for wave count 0? */
if eq junp update_wavetbl _ptr;

/* if you are here, reuse sane sine value for now . dn{sine_value) renains unchanged */
junmp do_vi brato;

/* if necessary, calculate updated pointer to wavetable */
updat e_wavet bl _ptr:
m6 = dn(sin_inc); /* desired increment sin_inc - frequency f = sin_inc x fs /
D */
r7 = dmii 6, nb);
dn(si ne_value) = r7;
r4 = dm(pitch_bend);

get next value from sine | ookup table */
use for trenolo_effect anplitude scaling factor */
controls scaling of center tap delay offset */

~———— =
EE

r7 = ashift r7 by r4; divide by at least 2 to keep #s between 0.5 and -0.5 */
ré6 = D Total Delay Tinme D = anplitude of sine wave | ookup */
r8 =r6 * r7 (SSFR); delay multiplication factor */

dn( excursion_val ue) = r8; save to current sine value to be reused above */

do_vi brat o:

r2 = dn(excursion_val ue); /* get previous or newy updated scal ed sine value */
rl = D2; /* get nominal tap center delay */
rd =rl +r2; /* r4 =d(n) = D2 + D* sin(fc*t) */

/* r4 noww |l be used to set nR register to fetch tine varying del ayed sanple */

m = r4; /* set tap valud for output of circular delay line */

modi fy(i2, nR); /* go to del ayed sanpl e address */

rd4 = -r4; /* negate to get back to where we were */

m = r4; /* set up to go back to current location after nenory access
*/

r10 = dm(i 2, nR); /* get del ayed sanple */

/* wite vibrato output sanple to rO for trenolo routine */
ro = rio;

/* put input sanple fromr2 into tap-0 of delay |lines */
/* and backshift pointer & update circular delay-line buffer*/
dm(i 2, -1) =r3;

whi ch_trenol o_routi ne:
r4a = DMEffect_Cirl);
r4 = pass ré4,
if eq junp nono_trenol o_effect; /* if == 1, execute nono trenolo routine */
/* otherwi se, execute stereo trenolo routine */
stereo_trenol o_effect:
/* get generated sine value fromwavetabl e generator, where r4 = sin(2*pi*fc*t) */

ra dn( si ne_val ue) ;

r5=r0* r4 (SSFR);

/* test current sine value to pan left or right, if + then pan left, if - then pan right */
r4 = pass r4,

I F LE JUWP (pc, pan_right_channel);

pan_| eft _channel :
/* wite trenplo result sanple to left/right output channels */
DM Left _Channel ) = rb;
ré = 0x00000000;
DM R ght _Channel ) = r6;
JUWP (pc, trenol o_done);

pan_ri ght _channel :
/* wite trenolo result sanple to left/right output channels */
ré = 0x00000000;
DM Left _Channel ) = r6;
DM R ght _Channel ) = r5;
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trenol o_done:
rts;

nmono_trenol o_effect:
/* get generated sine value fromwavetabl e generator, where r4 = sin(2*pi*fc*t) */

r4 = dn(sine_val ue);

r5=r0* r4 (SSFR);

/* wite trenolo result sanple to left/right output channels */

dn( Left_Channel) =r5; /* left output sanple */
dm( Ri ght _Channel) = r5; /* right output sanple */
RTS;

3.3.2.4 Pitch Shifter

An interesting and commonly used effect is changing the pitch of an instrument or voice. The algorithm that can be used to
implement a pitch shifter is the chorus or vibrato effect. The chorus routine is used if the user wishes to include the original
and pitch shifted signals together. The vibrato routine can be used if the desired result is only to have pitch shifted samples,
which is often used by TV interviewers to make an anonymous persons voice unrecognizable. The only difference from these
other effectsis the waveform used for delay line modulation. The pitch shifter requires using a sawtooth/ramp wavetable to
achieve a'linear' process of dropping and adding samplesin playback from an input buffer. The slope of the sawtooth wave
aswell asthe delay line size determines the amount of pitch shifting that is performed on the input signal.

Figure 74.
Implementation of a Generic Pitch Shifter

Sawtooth Wave

Modulating Tap Center
. of Delay Line N

T & -dm) || ow Pass
x(n) —— Z'N TD_’ Filter _y(:1)
a

Gain

N = variable delay d(n)

The audible side effect of using the 2 instrument chorus algorithm (with one delay line) isthe ‘clicks’ that are produced
whenever the delay pointer passes the input signal pointer when samples are added or dropped. This is because output pointer
is moving through the buffer at a faster/slower rate than the input pointer, thus eventually causing an overlap. To reduce or
eliminate this undesired artifact cross-fading techniques can be used between two alternating delay line buffers with a
windowing function, so when one of delay line output pointers are close to the input, a zero crossing will occur at the overlay
to avoid the 'pop' that is produced. For higher pitch shifted values, there is a noticable ‘warble' audio modulation produced as
aresult of the outputs of the delay lines being out of phase, which causes periodic cancellation of frequencies to occur.
Methods to control the delay on-the-fly to prevent the phase cancellations have been proposed, but are not implemented in our
reference examples. A basic 21065L assembly example of the pitch shifter used as a Detune Effect is shown in the next
section.

Again, the DSP timer can update the delay-line retrieval address value of a previous sample which resultsin alinear adding
and dropping of samples. Using a positive or negative slope determines if the pitch of an audio signal will be shifted up or
down (see diagram below). The same look-up table can be used to pitch shift up or down. The address generation unit only
needs to use an increment or decrement modify register that will move forward or backwards in the table. Multiple harmonies
can be created by having multiple pointers with positive and negative address modify values circling through the table.
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Figure 75.
Example Two-Voice Pitch Shifter Implementation
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Figure 76.
Example 4K Sawtooth Wavetable
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3.3.2.5 Detune Effect

The Detune Effect is actually aversion of the Pitch Shifter. The pitch shifted result is set to vary from the input by about +/-
1% of the input frequency. Thisisdone by setting the Pitch Shift factor to 0.99 or 1.01 The effect's result isto increase or
decrease the output and combine the pitch shift with the input to vary afew Hz, resulting in an ‘out of tune effect’. (The
algorithm actually uses a version of the chorus effect with a sawtooth to modulate the delay-line). Small pitch scaling values
produce a‘chorus like' effect and imitates two instruments dightly out of tune. This effect is useful on vocal tracksto give
impression of 2 musicians singing the same part using 1 person's voice. The pitch shifting result is to small for the formant
frequencies of the vocal track to be affected, so the shifted voice still sounds realistic.

For a strong Detune Effect, vary the pitch by 5-10 Hz
For aweak Detune Effect ( 'Sawtooth Chorus sound ), vary the pitch by 2-3 Hz
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21065L Example Detune Effect - Slight Pitch Shift Variation of an Input Signal

/* khkhkhkhkhkhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhkhkhkhhkhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkxx*x*%x

DETUNE_EFFECT. ASM - DETUNE. ASM - Pitch Shift Effect Simulating 2 Voices Slightly Qut O Pitch
(Timer0 Update Method - delay cal cul ation determnined by the on-chip programmble tiner)
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khkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhkhhhhhhhhhhhhhkhhkhhhhhkhhhhhhhkhhhhhhkhhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkxkkkxkx**x*%x */

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldefs. h"

. GLOBAL pitch_shifter;

. GLOBAL Init_Pitch_Buffers;

. GLOBAL TinmerO_Initialization;

. GLOBAL wavet abl e_gen;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

/* pitch shift filter coefficients */

#define a0 0x40000000 /* One Half, or 0.5 in 1.31 format */
#define al 0x40000000 /* One Half, or 0.5 in 1.31 format */
#define a2 0x40000000 /* One Half, or 0.5 in 1.31 format */

/* delay buffer and wavetabl e definitions */

/* increasing depth size D increases pitch variations */

#define D 2000 /* Depth, or TD = D/fs = 1500/ 44100 = 35 nsec */
#define D2 D2

#defi ne WaveSi ze 4000 /* triangul ar wavetabl e size*/

#defi ne WnSi ze 4000 /* w ndow function for cross-fading delay-lines */

/* pitch shift control paraneters */

#define c 2 /* signal frequency fcl =cl * freqtimer = 4 Hz */
#defi ne nodul ati on_rate 50000 /* # of DSP cycles between Tiner Expire | SR update */
#define pitch_depth 1 /* Enter # from1 to 10. DO NOT ENTER '0'!, to keep #'s
between +/- 0.5 in fractional format */
/* The | ower the nunber, the greater the pitch bend */

/* playing with the pitch depth, nodul ation rate,

and pitch-depth size affects

the intensity of the pitch shifted sound,

the pitch-depth setting is strongest

at lower nunbers 1 to 3, it is less intense for 4 to 7.*/
{sawt oot h chorus - nodrat e=50000, pitchdepth=1, c=1, D=1000)
{detune effect - nodrate=50000, pitchdepth=1, c=2, D=1000}
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.segrment /dm del aylin;

.var wi[D + 1]; /* delay-line buffer, max delay = D */

.var w2[D + 1]; /* delay-line buffer, nax delay = D *

. endseg;

.segnent /dm dnpi t ch;

.var saw_val uel; /* wavetabl e update via tiner for delay cal culation */

.var saw_val ue2;

.var vol une_dl i nel;

.var vol ume_dl i ne2;

.var wi ndow_fnc[ WnSize] = "triang_wi ndow.dat"; /* |oad wi ndow function for crossfade control */

.var sawt oot h_wav[ WaveSi ze] = "sawtooth.dat"; /* load one period of the wavetable */
/* min frequency f1 = fs/Ds = 8/4 =2 Hz */

. endseg;

[* ceeeeeee e PROGRAM MEMORY CODE---------------------"------------ */

. segment /pm pm code;

Init_Pitch_Buffers:

B2 = wl;, L2 = @ui; /* delay-line 1 buffer pointer and | ength */
m =1,
LCNTR = L2; /* clear delay line buffer to zero */
DO clrDiinel UNTIL LCE;
clrDinel: dm(i 2, nmR2) = 0;
B3 = w2; L3 = @&2; /* delay-line 2 buffer pointer and |l ength */
B = 1,
LCNTR = L3; /* clear delay line buffer to zero */
DO clrDii ne2 UNTIL LCE;
clrDine2: dm(i 3, nmB) = 0;
B6 = sawt oot h_wav; /* pointer 1 for sawtooth signal generator */
L6 = @awt oot h_wav; /* get size from sawtooth nunber table | ookup */
B7 = sawt oot h_wav; /* pointer 2 for sawtooth signal generator */
17 = sawt oot h_wav + 2000; /* start in middle of table */
L7 = @awt oot h_wav; /* get size from sawtooth nunber table | ookup */
B4 = wi ndow_f nc; /* pointer for crossfade wi ndow for delay-line 1 */
L4 = @i ndow_f nc; /* get length of w ndow buffer */
B5 = wi ndow_f nc; /* pointer for crossfade wi ndow for delay-line 2 */
I'5 = wi ndow_fnc + 2000; /* start in middle of table */
L5 = @i ndow_fnc; /* get length of w ndow buffer */
RTS;
/* ___________________________________________________________________ */

/* Set up tiner for the Chorus Effects wavetabl e generator */

TinmerO_Initialization:

bit clr node2 TI MENO; [* timer off initially */

bit set node2 PWVMOUTO | PERI OD _CNTO | | NT_H 0; /* latch tinerO to high priority timer int */

r0 = nodul ation_rate;

DM TPERI OD0) = rO;

DM TCOUNTO) = rO0; /* assuming 16.7 nSec cycle @60 MPs */

ro = 10;

DM TPW DTHO) =r0;

bit set imask TMZHI; /* timer high priority */

bit set node2 TI MENO; /* timer on */

rts;
/* _____________________________________________________________________________________________ */
/ */

Wavet abl e Generator used for Pitch Shift Delay Line Mdulation */
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/* */
/* _____________________________________________________________________________________________ */
/* Hgh Priority Tinmer Interrupt Service Routine for Delay Line Mdulation of Chorus Buffers */

/* This routine is a wavetabl e generator, where r3 = D2 * sin(2*pi*fc*t) */

/* and it nodul ates the chorus delay line around rotating tap center */

wavet abl e_gen:
bit set npdel SRRFL;
nop; /* 1 cycle latency witing to Mddel register */

/* ¢ = desired wavetabl e increnent (DAG nodifier), where frequency f = c x fs / D */

r3=r1* r2 (SSFR);
dnm(saw_val uel) = r3;

multiply Delay by a fractional value fromO to 0.5 */
store to nenory for chorus routine */

sawt oot h1:
rl = b /* Total Delay Time */
r2 =dmi6, c); /* get next value in wavetable */
r2 = ashift r2 by -pitch_depth; /* divide by at least 2 to keep 1.31 #s between 0.5/-0.5 */
/*
/*

sawt oot h2:
rl = D /* Total Delay Tinme */
r2 =dmi7, c); /* get next value in wavetable */
r2 = ashift r2 by -pitch_depth; /* divide by at least 2 to keep 1.31 #s between 0.5/-0.5 */
r3=rl1%*r2 (SSFR); /* multiply Delay by a fractional value fromO to 0.5 */
dnm(saw_val ue2) = r3; /* store to nenory for pitch shift routine */

/* determ ne cross-fade gain control values for both delay-line buffers used in pitch shift routine */
/* scaling factor will be 0x00000000 whenever the center tap crosses input of the delay line buffer */

triangl _w ndow val uel:
rl = dmii4, c); /* corresponds with sawtooth 1 */
dnm(vol ume_dl i nel) ri;

triangl _w ndow_val ue2:
rl =dmii5, c); /* corresponds with sawtooth 2 */
dm(vol ume_dl i ne2) = r1;

bi_t clr nodel SRRFL;

rti;
/* ______________________________________________________________________________________________ */
/* */
/* Digital Pitch Shifter Routine - process right channel only */
/* */
/* ______________________________________________________________________________________________ */
pitch_shifter:

rl5 = DM Ri ght _Channel ) ; /* get x-input, right channel */

r3 = dm(saw_val uel); /* calculate time-varing delay for 2nd voice */

rl = D2; /* center tap for delay line 1*/

rd =rl +r3; /* r4d =d(n) = D2 + D* randonm(fc*t) */

r5 = dm(saw_val ue2); /* calculate time-varing delay for 3nd voice */

r2 = D2; /* center tap for delay line 2 */

ré6 =r2 + rb; /* r6 =d(n) = D2 + D* randonm(fc*t) */

r8 = ao; /* input gain */

mf =r8 * r15 (SSF); /* nmf = a0 * x-input */

nm = r4; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

r4 = -ré4; /* negate to get back to where we were */

m = r4; /* used to post nodify back to current sanple */

r9 = dn(i2, n2); /* get tine-varying delayed sanple 1 */

r11 = dm(vol ume_dl i nel); /* get scaling factor */

r9 =r9 * rll (SSF); /* multiply by delay |ine output */

r8 = al; /* delay-line 1 gain */

mf =mf +r8 * r9 (SSF); /* mf =a0 * x + al * s1 */

m = r6; /* tap outputs of circular delay line */

modi fy(i3, nB); /* go to del ayed sanple */

ré6 = -r6; /* negate to get back to where we were */

B8 = r6; /* used to post nodify back to current sanple */
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r10 = dm(i 3, nB); /* get tine-varying del ayed sanple 2 */
r11 = dm(vol unme_dl i ne2);

r10 = r10 * r11 (SSF);

r9 = az; /* delay-line 2 gain */

mf =mf +r9 * r10 (SSFR); /* mf =a0 * x + al * s1 + a2 + s2 */
nrf = SAT mrf; /* saturate result if necessary */

rl0 = nrif; /* pitch shifted result in r10 */

/* put input sanple fromrl5 into tap-0 of delay lines */
dm(i 2, 0) = r1i5;
dn(i 3, 0) = ri5;

/* backshift pointers & update circular delay-line buffers */

modi fy(i2, -1);

nmodi fy(i3, -1);

/* wite pitch shifted output sanple to left/right output channels */
DM Left _Channel ) =r 10;

DM R ght _Channel ) =r 10;

rts;

. endseg;
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3.3.3 Digital Reverberation Algorithms for Simulation of Large Acoustic Spaces

Reverberation is another time-based effect. More complex processing than echoing, chorusing or flanging, reverberation is
often mistaken with delay or echo effects. Most multi-effects processing units provide a variation of both effects.

Thefirst simulation reverb unitsin the 60’'s and 70’ s consisted of using a mechanical spring or plate attached to a transducer
and passing the electrical signal through. Another transducer at the other end converted the mechanical reflections back to the
output transducer. However, this did not produce realistic reverberation. M.A Schroeder and James A. Moorer developed
algorithms for producing realistic reverb using a DSP.

Figure 78.
Reverberation of Large Acoustic Spaces
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The reverb effect simulates the effect of sound reflectionsin alarge concert hall or room (Figure 78). Instead of afew
discrete repetitions of a sound like a multi-tap delay effect, the reverb effect implements many delayed repetitions so close
together in time that the ear cannot distinguish the differences between the delays. The repetitions are blended together to
sound continuous. The sound source goes out in every direction from the source, bounces off the walls and ceilings and
returns from many angles with different delays. Reverberation is almost always present in indoor environments, and the
reflections are greater for hard surfaces. As Figure 12 below shows, Reverberated Sound is classified as three components:
Direct Sound, Early reflections and the Closely Blended Echos (Reverberations) [11,12,14].

Figure 79.
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Direct Sound - directly reaches the listener from the sound source.

Early reflections - early echos which arrive within 10 msto 100 ms by the early reflections of surfaces after the
direct sound.

Closely Blended Echos - is produced after 100 ms early reflections.

Figure 79 shows an impul se response of alarge acoustic space, such as an auditorium or gymnasium. In atypical large
auditorium, the first distinct delay responses that the user will hear are termed ‘early reflections’. These early reflections are a
few relatively close echos that actually occur in as reverberation in large spaces. The early reflections are the result of the
first bounce back of the source by surfaces that are nearby. Next come echos which follow one another at such small intervals
that the later reflections are no longer distinguishable to the human ear. A Digital Reverb typically will process the input
through multiple delayed filters and add the result together with early reflection computations. Various parameters to
consider in the algorithm would be the decay time (time it takes for reverb to decay) , presense (dry signal output vs.
reverberations), and tone control (bass or treble) of the output reverberations.

M.A. Schroeder suggested 2 ways for producing a more realistic sounding reverb. The first approach was to implement 5
allpass filters cascaded together. The second way was to use 4 comb filtersin parallel, summing their outputs, then passing
the result through 2 alpassfiltersin cascade.

James A. Moorer expanded on Schroeder’ s research.  One drawback to the Schroeder Reverb is that the high frequencies
tend to reverberate longer than the lower frequencies. Moorer proposed using alow pass comb filter for each reverb stage to
enlarge the density of the response. He demonstrated a technique involving 6 parallel comb filters with alow pass output,
summing their outputs and then sending the summed result to an allpass filter before producing the final result. Moorer also
recommended including the simulation of the early reflections common in concert halls using a tapped-delay FIR filter
structure, along with the reverb filters for amore realistic response. Some initial delays can be added to the input signal by
using an FIR filter ranging from 0 to 80 milliseconds. Moorer chose appropriate filter coefficients to produce 19 early
reflections. Moorer’s reverberator produced a more realistic reverb sound than Schroeder’s, but still produces a rough sound
for impulse signals such as drums.

Figure 80.

James A. Moorer’s Digital Reverberation Structure

¢—<<—
6 Low Pass —»O— 277
Comb Filters

\ S o0
All Pass Filter

7 -307 @

FIR Filter
{Pre-Delay} Reverb
Gain
> Z -3520 7 - 2467
* * Blended
paas Reverberations
a0\ la®) /a7 z "
N =
+ | D ) o y(n)
)((n) N ER Gain Early Reflections A
Gain (Direct) Direct Sound

78



The figure above shows the structure for JA Moorer’s Digital Reverb [11] algorithm for alarge auditorium response
assuming a44.1 kHz sampling rate. Moorer demonstrated a technique involving 6 parallel comb filters with alow pass
output, summing their outputs and then sending the summed result to an all-pass filter before producing the final result. For
realistic sounding reverberation, the DSP requires the use of large delay lines for both the comb filter and early reflection
buffers. Each comb filter incorporates a different length delay-line. The reverberation delay time depends on the length the
delay-line buffer sizes and the sampling rate. Fine tuning of input and feedback for each comb filter gain and delay-line
values vary the reverberation effect to provide a different room size characteristic. Sinceal are programmable, the decay
response can be modified on the fly to change the amount of the reverb effect.

Figure 82.
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Table6.
Early Reflection Early Reflection
Delay Tap Tap Gain Parameters
Lengths Fractional 1.15 Representation
-190 0.841 = Ox6BA6
-759 0.504 = 0x4083
-44 0.490 = Ox3ED9
-190 0.379 = 0x3083
-9 0.380 = 0x30A4
-123 0.346 = O0x2C4A
-706 0.289 = Ox24FE
-119 0.272 = 0x22D1
-384 0.192 = 0x1893
-66 0.193 = 0x18B4
-35 0.217 = O0x1BC7
-75 0.181 = 0x172B
-419 0.180 = 0X170A
-4 0.181 = 0x172B
-79 0.176 = 0x1687
-66 0.142 = 0x122D
-53 0.167 = 0x1560
-194 0.134 = 0x1127
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Reverb Building Blocks Low Pass Comb Filter and All Pass Filter Structures

For realistic sounding reverberation, the DSP requires the use of large delay lines for both the comb filter and early reflection
buffers. The comb filter is used to increase echo density and give the impression of a sizable acoustic space. Each comb
filter incorporates a different length delay line. Each delay line can be tuned to a different value to provide a different room
size characteristic. Fine tuning of input and feedback gains for each comb filter gain and comb filter delay-line sizes will vary
the reverberation response. Since these parameters are programmable, the decay response can be modified on the fly to
change the amount of the reverb effect for simulation of alarge hall or small room. The total reverberation delay time
depends on the size the comb filter/early reflections buffers and the sampling rate.

Low pass filtering in each comb filter stage reduces the metallic sound and shortens the reverberation time of the high

frequencies, just as areal auditorium response does. The allpass filter is used along with the comb filters to add some color to
the 'colorless/flat’ sound by varying the phase, thus helping to emulate the sound characteristics of areal auditorium.

ADSP-21061 Low Pass Comb Filter Subroutine Example

/* Low Pass IIR Conmb Filter Structure:
x(n) --------- b O e > y(n)
N+
I _
| | z7(-D |
u(n) I [ |
| b0
[----------- (O O---------
+ vO(n) +
|
| z"-1 |
|
vli(n)
bl al
----- N R [ S
*/

Low _Pass_Conb_Filter:
L3 = @onb_out put;

B3 = conb_out put;

RO = 0x50710000; /* gf = G/ (1+gl) -- conb feedback gain */
R1 = 0x26660000; /* gl -- low pass filter gain */

L9 = COMB_LENGTH,

R4 = PM19,0); /* read conmb buffer -> output */

R5 = DM conb_| pf_state); /* read previous |low pass filter state */
MRF = R4*RO (SSF), DM 13, M) = R4; [/* save output, feedback conb output */
MRF = MRF + R5*Rl (SSFR); /* add | ow pass filter state */

R10 = MR1F;

DM conb_| pf _state) = R10; /* replace with new filter state */

MR1LF = R5; /* get old |ow pass filter output */

R7 = 0x46760000; /[* gi = 1/(1 + gf + gf*gl) */

MRF = MRF + R6*R7 (SSFR); /* mac | pf output with input*/

R10 = MR1F;

PM19,-1) = R10; /* wite sanple to buffer */

RTS;
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ADSP-21065L Example All-Pass Filter Implementation

/*

*/

al |

1st Order All pass Transfer function and 1/O difference equations:
-a + z(-D)
Hz) = ----------- y(n) = ay(n - D) - ax(n) + x(n - D)

IR conb filters tend to magnify input signal frequencies near conmb filter peak
frequencies. Allpass filters can be used to prevent this 'coloration' of the input
since it has a relatively flat magnitude response for all frequencies.

_pass_filter:

LO = @l | _pass;

R1 = 0x599A0000; /* feedback gain */

R10 = DM 1 0, 0); /* | oad output of buffer */

MRLF = R10;

MRF = MRF + R1*RO (SSFR); /* add to (feedback gain)*(input) */
MRF = SAT MRF;

R3 = MRLF; /* output of all pass in R3 */

MR1F = RO; /* put input of all pass in MRLF */
MRF = MRF - R1*R3 (SSFR); /* input - (feedback gain)*(output) */
MRF = SAT MRF;

R10 = MRLF;

DM 10, M7) = R10; /* save to input of buffer */

RTS;

Figure 83 is an example implementation of a Plate Reverb topology that is described by Dattorro[30], and will not be
discussed in too much detail here. The reader should refer to Dattorro's description on this class of reverb algorithms,
although it is not explored in much theoretical detail, as he suggests that it is best explored through tinkering with the gains
delay line values and output tap points. This suggested implementation yields very high quality reverberation very efficiently.
Notice that is has similar building blocks using comb filters. In addition, it uses allpass filter diffusers based on lattice
structure topologies.
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Figure 83.
Griesinger’s Plate Class Reverberation Structure
X, As Described By Dattorro [AES Journal Dec 97]
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/* khkhkhkhkhkhkhkhkhkhkhhhhhhhhhkhhhhhkhkhhhhhhhhkhhhhhhhkhkhhkhhhkhhhhhhhkhhhkhhkhhhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkxx*x*%x

Digital Plate-Cl ass Reverberation Audio Effect - Giesinger's Mdel
Descri bed by Jon Dattorro in "Effect Design Part 1: Reverberator and
O her Filters, " Journal of the Audio Engineering Society," Vol. 45,
No. 9, pp. 660-684, Septenber 1997.

Created for the 21065L EZ-LAB Eval uation Platform

Includes on-the-fly selection of reverb conb & allpass filter gains/lengths,
predel ay gain/length presets, and left/right panning via |RQL and | RQ2 pushbutton control

** Works well for single instruments such as a guitar, keyboard, violin....

khkhkhkhkhkhkhkhkhkhkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhhhhkhhkhkhkhhhhhhhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkxkkxx*x*%x */

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldef s. h"

. GLOBAL Di gital _Reverberator;

. GLOBAL Init_Reverb_Buffers;

. GLOBAL change_reverb_settings;
. GLOBAL modi fy_reverb_m x;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

/* Default Reverberation Paranmeters - Reverb DM Vari abl es and pointers */
.segnment /dm rev_vars;

#define Fsl 29761 /* Sanple Rate is 29761 Hz, default recommended by Dattorro */
/* reducing Fs will reduce delay line nenory requirenents */
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/* Reverberation can be convincing at sanple rates as |ow as 20-24 kHz */

#define Fs2 48000 /* Sanple Rate is 48000 Hz, delay lines increased for 48 kHz */
/* reverb left channel output taps at 48 kHz fs */

#define D1_L 429 /* = 266 @29761 Hz Fs */
#define D2_L 4797 /* = 2974 @29761 Hz Fs*/
#define D3_L 3085 /* = 1913 @29761 Hz Fs */
#define D4_L 3219 /* = 1996 @29761 Hz Fs*/
#define D5_L 3210 /* = 1990 @29761 Hz Fs */
#define D6_L 302 /* = 187 @29761 Hz Fs */
#define D7_L 1719 /* = 1066 @29761 Hz Fs */
/* reverb right channel output taps at 48 kHz fs*/

#define D1_R 569 /* = 353 @29761 Hz Fs */
#define D2_R 3627 /* = 3627 @29761 Hz Fs */
#define D3_R 5850 /* = 1228 @29761 Hz Fs */
#define D4_R 2673 /[* = 2673 @29761 Hz Fs */
#define D5_R 4311 /* = 2111 @29761 Hz Fs */
#define D6_R 540 /* = 335 @29761 Hz Fs */
#define D7_R 195 /* = 121 @29761 Hz Fs */

/* pointers for input and decay diffusers */

. VAR al | _pass_ptr1;
. VAR al | _pass_ptr?2;
. VAR al | _pass_ptr3;
. VAR al | _pass_ptr4;
. VAR al | _pass_ptr5;
. VAR al | _pass_ptr6;
. VAR al | _pass_ptr7;
. VAR al | _pass_ptr8;

/* Single Length Conb Filter State Variables */

. VAR conbl_f eedback_state;

. VAR conb2_f eedback_st at e;

. VAR conb3_f eedback_state;

. VAR recircul atel_feedback;
. VAR recircul at e2_f eedback;
. VAR di ffusion_result;

. VAR predel ay_out put;

. VAR reverb_left;

. VAR reverb_right;

. VAR Lrev_out put _t aps[ 6] ;

. VAR Rrev_out put _t aps[ 6] ;

. endseg;

Y S

.segnment /dm dmrevrb;

DATA MEMORY DELAY LINE & ALLPASS FI LTER BUFFERS

/* Allpass and Delay Line Filter Length Definitions */

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne al | pass_Di i nel

ne al | pass_Dl i ne2

ne ALLPASS1_LENGTH
ne ALLPASS2_LENGTH
ne ALLPASS3_LENGTH
ne ALLPASS4_LENGTH
ne ALLPASS5_LENGTH

i ne ALLPASS6_LENGTH

i ne ALLPASS7_LENGTH
i ne ALLPASS8_LENGTH
ineD_Linel
ineD_Line2
ineD_Line3
ine D Line4

/* Audio delay |ines */

. VAR predel ay[ 6321] ;
. VAR wi[ D _Li nel];
. VAR w2[ D_Li ne2];
. VAR w3[ D_Li ne3];

2168 /* = 1344 @29761 Hz Fs */
2930 /* = 1816 @29761 Hz Fs */
229 /* = 142 @29761 Hz Fs */
172 /* = 107 @29761 Hz Fs */
611 /* = 379 @29761 Hz Fs */
447 [* = 277 @29761 Hz Fs */
al | pass_Dli nel/ 2 /* 2168/ 2 variable delay rotating around tap center
al | pass_Dl i ne2/ 2 /* 2930/ 2 variable delay rotating around tap center
2903 /* = 1800 @29761 Hz Fs */
4284 /* = 2656 @29761 Hz Fs */
7182 /* = 4453 @29761 Hz Fs */
6000 /* = 3720 @29761 Hz Fs */
6801 /* = 4217 @29761 Hz Fs */
5101 /* = 3163 @29761 Hz Fs */

83




VAR W[ D _Lined];

/* input diffusers using allpass filter structures */

.VAR  diffuser_1[ ALLPASS1_LENGTH] ;

. VAR di ffuser_2[ ALLPASS2_LENGTH] ;

.VAR  diffuser_3[ ALLPASS3_LENGTH] ;

. VAR di f fuser_4[ ALLPASS4_LENGTH] ;

. VAR decay_di f fuser _Al[ ALLPASS5_LENGTH] ; /* allpass diffuser with variable delay */
. VAR decay_di ffuser_B1[ ALLPASS6_LENGTH] ; /* allpass diffuser with variable delay */
. VAR decay_di f fuser _A2[ ALLPASS7_LENGTH] ;

. VAR decay_di f fuser_B2[ ALLPASS8_LENGTH] ;

. endseg;

[* e | NTERRUPT/ FLAG REVERB FX DEMO CONTROL PARAMETERS --------- */
.segnment /dm | RQCctl;

/* Reverb Control Paraneters, these control 'knobs' are used to change the response on-the-fly */
. VAR decay = 0x40000000; /* Rate of decay - 0.05 */
. VAR bandwi dt h = 0x7f 5c28f 6; /* = 0.9995, H gh-frequency attenuation on input */
/* full bandwi dth = 0x9999999 */
. VAR danpi ng = 0x0010624d; /* = 0.0005, Hi gh-frequency danpi ng; no danping = 0.0 */
. VAR predel ay_tine = 200; /* controls length (L6 register)of predelay buffer */
/* length val ue always << nmax buffer |length! */

. VAR decay_diffusion_1
. VAR decay_di f fusi on_2

0x5999999a; /* 0.70, Controls density of tail */
0x40000000; /* 0.50, Decorrelates tank signals */
/* decay diffusion 2 = decay +0.15, floor = 0.25, ceiling - 0.50 */
0x60000000; /* = 0.75, Decorrelates incom ng signal */
0x50000000; /* = 0.625, Decorrelates incomng signal */

. VAR i nput _diffusion_1
. VAR i nput _di ffusion_2

. VAR DRY_GAI N_LEFT = Ox7FFFFFFF; /* Gain Control for left channel */
/* scal e between 0x00000000 and Ox7FFFFFFF */
. VAR DRY_GAI N _RI GHT = Ox7FFFFFFF; /* Gain Control for right channel */
/* scal e between 0x00000000 and Ox7FFFFFFF */
/* Gin Control for predelay output */
/* scal e between 0x00000000 and Ox7FFFFFFF */
. VAR PREDEL_GAI N_RI GHT = 0x00000000; /* Gain Control for predelay output */
/* scal e between 0x00000000 and Ox7FFFFFFF */
/* Gain for reverb result */
/* scal e between 0x00000000 and Ox7FFFFFFF */
/*
/*

. VAR PREDEL_GAI N_LEFT = 0x00000000;

VAR  VET_GAI N_LEFT = OX7FFFFFFF;

Gain for reverb result */
scal e between 0x00000000 and Ox7FFFFFFF */

VAR  VET_GAIN_RI GHT = Ox7FFFFFFF;

. VAR | RQL_counter = 0x00000004; /* selects preset 1 on first I RQL assertion */
. VAR | R@R_counter = 0x00000004; /* selects preset 1 on first IRQ assertion */
. endseg;

R PROGRAM MEMORY CODE--------------------------------- */

. segment /pm pm code;

Init_Reverb_Buffers:

/* initialize all-pass filter pointers to top of respective buffers */
B7 = diffuser_1,;

DM al | _pass_ptrl) = B7;
B7 = diffuser_2;

DM al | _pass_ptr2) = B7;
B7 = diffuser_3;

DM al | _pass_ptr3) = B7;
B7 = diffuser_4;

DM al | _pass_ptr4) = B7;
B7 = decay_di ffuser_Al,
DM al | _pass_ptr5) = B7;
B7 = decay_di f fuser_B1,;
DM al | _pass_ptr6) = B7;
B7 = decay_di ffuser_A2;
DM al | _pass_ptr7) = B7;
B7 = decay_di ffuser_B2;
DM al | _pass_ptr8) = B7;

/* Initialize Audio Delay Lines */
B2 = wl; L2 = @u; /* delay-line buffer 1 pointer and |length */
B3 = w2; L3 = @&; /* delay-line buffer 1 pointer and |ength */




B4 = w3; L4 = @B; /* delay-line buffer 1 pointer and |ength */

B5 = w4; L5 = @¥4; /* delay-line buffer 1 pointer and |length */

B6 = predelay; L6 = @redel ay;

/* clear all audio delay line buffers to zero */

m =1 nB =1, mM =1, nb =1; n6 = 1,

LCNTR = L2;

DO clrDine_1 UNTIL LCE;
clrDine_1: dm(i 2, nm2) = 0;

LCNTR = L3;

DO clrDine_2 UNTIL LCE;
clrDine_2: dm(i 3, nmB) = 0;

LCNTR = L4;

DO clrDine_3 UNTIL LCE;
clrDine_3: dm(i 4, mi) = 0;

LCNTR = L5;

DO clrDine_4 UNTIL LCE;
clrDine_4: dm(i 5, nmb) = 0;

LCNTR = L6;

DO clrDine_5 UNTIL LCE;
clrDine_5: dm(i 6, m6) = O;

RTS;
/* _____________________________________________________________________________________________ */
/* */
/* Digital Reverb Filter Routines */
/* */
/* ______________________________________________________________________________________________ */
Di gital _Reverberator:

/* conbine both left and right input sanples together into 1 signal */

r0 = dm(Left_Channel); /* left input sanple */

rl = dnm(R ght _Channel); /* right input sanple */

r0 = ashift r0 by -1, /* scale signal by 1/2 for equal mx */

rl = ashift rl by -1; /* scale signal by 1/2 for equal mx */

r2 =r0 +ri,; /* 1/ 2xLeft(n) + 1/2 xR ght(n) = sum of input sanples */
conput e_pr edel ay:

L6 = dn{predelay_tine); /* get predelay tine setting, default is L6=@redelay */

r3 = dmi6, 0); /* get ol dest sanple, time delay = D _Linel x fs*/

dm(i 6, -1) =r2; /* wite input sanple to buffer */

dn( predel ay_output) = r3; /* used for final mx */

r2 =r3; /* r2 is input to reverb routines */

call (PC, hi_freq_input_atten); /* attenuate high-fregencies on input */

ro =r2,

call (PC, input_diffusers); /* call all-pass filters */

call (PC, reverberation_tank); /* controls the rate of reverberation decay */

call reverb_m xer;
/*
bypass_mi xer:

r0 = dm(reverb_left);

dn( Left _Channel) = r0;

r0O = dm(reverb_right);

dm( Ri ght _Channel) = rQ0;
*/

rts;
/* _____________________________________________________________________________________________ */
/* */
/* Hi gh Frequency | nput Attenuator */
/* */
/* This routine is a sinple conb filter, used to attenuate high frequencies on the input. */
/* H gher frequencies tend to dimnish faster than | ower frequecies in reverberant */
/* acousti c spaces */
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B DM bandwi dt h)

= full

hi _freqg_i nput _atten:
conb filter 1 - attenuate high frequencies on the input */

/*

bandwi dt h gai n when set to 0.9999999 (Ox7FFFFFFF in 1.31 format) */

/* full bandwi dth gain is 0.9999999 */
r4 =r2; /* r4 = conb filter input */
r6 = dm(bandwi dt h); /* high frequency bandwi dth gain */
r7 = Ox7FFFFFFF; /* 0.99999 or approximately = 1 */
r8 =r7 - ré6; /* r8 =1 - bandwi dth */
r5 = DM conbl_f eedback_state); /* read previous |ow pass filter output state */
mf = r4*r6 (SSF); /* scale conmb filter input */
mf = nmf + r5*r8 (SSFR); /* add previous filter state */
r2 = nrif; /* rl10 = conb filter output */
dn(conbl_feedback_state) = rl0; /* replace with new filter state */
rts; /* return fromsubroutine */
/* ____________________________________________________________________________________________ */
A Al Pass Filter Routines ---------------mmmmommmon */
/* */
/* Each all-pass filter diffusers are inplemented in the topol ogy */
/* of a two-multiplier lattice structure. */
/* */
/* i nput -> RO */
/* out put -> R3 */
/* */
/* Also, it is not necessary to save and restore all conb filter */
/* FIR or all-pass filter index and length registers, if only */
/* doing this reverb denpo. These extra instructions are included */
/* so that this exanple can easily be conbined with other audio */
/* effects that require the use of multiple buffers */
/* */
/* 1 index register 17 is used for all 4 allpass filters */
/* _______________________________________________________________________ */

i nput _di ffusers:

B7
17
L7
R1

di ffuser_1;

DM al | _pass_ptr1l);

@i ffuser_1;

DM i nput _di f fusi on_1);

al | pass_filt1:
R10 = DM 17, 0);

MRLF = RIO;
MRF = MRF + RI*RO (SSFR);
MRF = SAT MRF;

R3 = MRLF;

MRLF = RO;

MRF = MRF - R1*R3 (SSFR);
MRF = SAT MRF;

R10 = MRLF;

DM17,1) = RLO;

DM al | _pass_ptrl) =17,

al | pass_filt2:

B7 = diffuser_2;

17 = DM all _pass_ptr2);
L7 = @i ffuser_2;

Rl = DM i nput _di ffusion_1);
RO = RS;

R10 = DM 17,0);

MRLF = R10;

MRF = MRF + R1*RO (SSFR);
MRF = SAT MRF;

R3 = MRLF;

MRLF = RO;

MRF = MRF - RL1*R3 (SSFR);
MRF = SAT MRF;

R10 = MRLF;

~———— ~_~——

~—————

~——— ~——

~——

* ok ok F * EE

* % ok ok Ok F

* %k ok ok * * % ok

L

set base address to buffer */

get previous allpass 1 pointer address */
set length of circular buffer */
feedback gain for allpass */

| oad output of buffer */

put in forground MAC register */
add to (feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

put input of all pass in MRLF */

input - (feedback gain)*(output) */

saturate if necessary */

put MACresult in register file */

save to input of buffer, update pointer */

save current allpass 1 pointer address for next time */

set base address to buffer */
/* get previous allpass 2 pointer address */
set length of circular buffer */
feedback gain for allpass 1*/
output of allpass 1 = input of allpass 2 */

| oad out put of buffer */

put in forground MAC register */
add to (feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

put input of all pass in MRLF */
input - (feedback gain)*(output) */
saturate if necessary */

put MAC result in register file */
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DM 17,1) = R10; /* save to input of buffer, update pointer */
DM al | _pass_ptr2) =17, /* save current allpass 2 pointer address for next tine */
al | pass_filt3:
B7 = diffuser_3; /* set base address to buffer */
17 = DM al | _pass_ptr3); /* get previous allpass 3 pointer address */
L7 = @li ffuser_3; /* set length of circular buffer */
Rl = DM i nput _di ffusion_2); /* feedback gain for allpass 2*/
RO = R3; /* output of allpass 2 = input of allpass 3 */
R10 = DM 1 7, 0) ; /* |l oad output of buffer */
MRLF = R10; /* put in forground MAC register */
MRF = MRF + RL*R0O (SSFR); /* add to (feedback gain)*(input) */
MRF = SAT MRF; /* saturate if necessary */
R3 = MRILF; /* output of all pass in R3 */
MRLF = RO; /* put input of all pass in MRLF */
MRF = MRF - R1*R3 (SSFR); /* input - (feedback gain)*(output) */
MRF = SAT MRF; /* saturate if necessary */
R10 = MRLF; /* put MACresult in register file */
DM 17,1) = R10; /* save to input of buffer, update pointer */
DM al | _pass_ptr3) =17, /* save current allpass 3 pointer address for next tine */
al | pass_filt4:
B7 = diffuser_4; | * set base address to buffer */
17 = DM al | _pass_ptr4); /* get previous allpass 4 pointer address */
L7 = @li ffuser_4; /* set length of circular buffer */
Rl = DM i nput _di ffusion_2); /* feedback gain for allpass 3 */
RO = ; /* output of allpass 3 = input of allpass 4 */
R10 = DM 1 7, 0) ; /* |l oad output of buffer */
MRLF = R10; /* put in forground MAC register */
MRF = MRF + RL*R0O (SSFR); /* add to (feedback gain)*(input) */
MRF = SAT MRF; /* saturate if necessary */
R3 = MRILF; /* output of all pass in R3 */
DM di ffusion_result) = R3; /* save for holding tank routines */
MRLF = RO; /* put input of all pass in MRLF */
MRF = MRF - R1*R3 (SSFR); /* input - (feedback gain)*(output) */
MRF = SAT MRF; /* saturate if necessary */
R10 = MRLF; /* put MAC result in register file */
DM17,1) = RL0; /* save to input of buffer, update pointer */
DM al | _pass_ptr4) =17, /* save current allpass 4 pointer address for next tine */
RTS; /* return from subroutine */
A Reverb Hol ding Tank Routines ------------------------ */
/* */
/* R3 <- */
/* */
/* out put -> DM reverb_left) */
/* DM reverb_right) */
/* */
/* The reverberation tank recirculates 4 diffusers. [It's purpose */
/* is to 'trap' the input and nmake it recirculate in a 'figure 8 */
/* structure, thus altering the tail of the decaying reverb response. */
/* The decay coefficients deternmine the rate of decay. */
/* It is recommended to set the coefficents by ear. */
/* */
/* Al'so note: Diffuser Lattices Al and Bl have negative coefficients. */
/* The all pass structures have the MAC adds and subtract instructions */
/* reversed. The inpul se response changes, but it is still an allpass */
/* filter. This is reconmended by Dattorro to further enhance the del ay */
/* di ffusi on between both sides of the hol ding tank */
/R o

rever beration_tank:
/* initialize left & right output tap buffer pointers */

BO
LO
Bl
L1

Lrev_out put _t aps;
@.rev_out put _t aps;
Rrev_out put _t aps;
@Rr ev_out put _t aps;
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rl = DMrecircul atel_feedback); /* get previously trapped incom ng audio signal */

r2 = DM decay); /* Rate of decay on previous trapped signal */

r4 =rl*r2 (SSF); /* scale prior signal state */

r3 = DM diffusion_result); /* get output frominput diffusion section */

rl4 = r3 + r4; /* add to current input diffuser result */

rl = DMrecircul at e2_f eedback) ; /* get previously trapped incom ng audio signal */

r2 = DM decay); /* Rate of decay on previous trapped signal */

r4 =rl*r2 (SSF); /* scale prior signal state */

r3 = DM diffusion_result); /* get output frominput diffusion section */

rl5 = r3 + r4; /* add to current input diffuser result */

/* r14 and r15 are inputs to holding tank */
di f fusor _Al: /* allpass filter with variable delay */

B7 = decay_di ffuser_Al; | * set base address to buffer */

17 = DM al | _pass_ptr5); /* get previous allpass 2 pointer address */

L7 = @lecay_di ffuser_Al; /* set length of circular buffer */

rl = DM decay_di ffusion_1); /* feedback gain for allpass 1*/

ro = r15; /* tank input 1 */

rl0 = DM 17,0); /* |l oad output of buffer */

nr1f = r10; /* put in forground MAC register */

mf =nmf - r1*r0 (SSFR); /* add to -(feedback gain)*(input) */

mf = SAT mrf; /* saturate if necessary */

r3 = nrlif; /* output of all pass in R3 */

nr1lf = ro0; /* put input of all pass in MRLF */

mf =nmf + r1*r3 (SSFR); /* input + (feedback gain)*(output) */

nrf = SAT mrf; /* saturate if necessary */

rl0 = nrif; /* put MACresult in register file */

DM 17,-1) = rl0; /* save to input of buffer, update pointer */

DM al | _pass_ptr5) =17, /* save current allpass 2 pointer address for next tine */
audi o_del ay1:

r5 = dmii2, 0); /* get oldest sanple, tine delay = D _Linel x fs*/

/* tap inside of circular delay line 1, rO = sanpleD5_L = D5_L-th tap */

md = D5_L; nodify(i2, nR); /* point to d-th tap */

m = -D5 L; r0 =dnm(i2, nR); /* put d-th tap in data register */

DM Lrev_out put _taps + 4)= rO0; /* wite to 4th location in left reverb output buffer */

/* tap inside of circular delay line 1, rO = sanpleDl_R = D1_R-th tap */

m = DI_R nodify(i2, nR); /* point to d-th tap */

md = -D1I_R r0 =dmii2, nR); /* put d-th tap in data register */

DM Rrev_out put _taps + 0)= rO0; /* wite to O'th location in left reverb output buffer */

/* tap inside of circular delay line 1, rO = sanpleD2_R = D2_R-th tap */

mi = D2_R nodify(i2, nR); /* point to d-th tap */

m =-D2R r0 =dn(i2, nR); /* put d-th tap in data register */

DM Rrev_output _taps + 1)= rO0; /* wite to 1st location in left reverb output buffer */

dm(i 2, -1) =r3; /* wite input sanple to buffer */

conb_filter_2:
/* conb filter 2 */

r4 = rb5; /* r4 = conb filter input */

r6 = dm(danpi ng) /* high frequency danpling gain */

r7 = Ox7FFFFFFF; /* 0.99999 or approximately = 1 */

r8 =r7 - ré6; /* r8 =1 - danping */

r5 = DM conb2_f eedback_state); /* read previous |ow pass filter output state */
mf = r4*r8 (SSF); /* scale conmb filter input */

mf = nmf + r5*r6 (SSFR); /* add previous filter state */

rl0 = nrif; /* rl10 = conb filter output */
dn{conb2_feedback_state) = r10; /* replace with new filter state */

rll = DM decay);
r0 = r10*r1l1 (SSFR);

di f fusor _A2: /* allpass filter with variable delay */
B7 = decay_di ffuser_A2; | * set base address to buffer */
17 = DM al | _pass_ptr6); /* get previous allpass 2 pointer address */
L7 = @lecay_diffuser_A2; /* set length of circular buffer */
Rl = DM decay_di ffusion_2); /* feedback gain for allpass 1*/
RO = R3; /* output of allpass 1 = input of allpass 2 */
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ri0 = bM17,0);
mr 1f = r10;
mf =nmf + r1*r0 (SSFR);
mrf = SAT nrf;
r3 = nrif;
nrlf = r0;
mf =nmf - r1*r3 (SSFR);
mf = SAT mrf;
r10 = nrif;
/* tap inside of decay diffuser A2 filter delay Iline,
nm7 = D6_L; nodify(i7, nv);
nv = -D6_L; r0 =dn(i7, nv);
DM Lrev_out put _taps + 5)= rO0;
/* tap inside of decay diffuser A2 filter delay line,
n7 = D3_R nodify(i7, nv);
/7 = -D3_R  r0 =dm(i7, n¥);
DM Rrev_out put _taps + 2)= r0;
DM17,-1) = rl0;
DM al | _pass_ptr6) =17,
audi o_del ay2:
= dn(i3, 0);

ap inside of circular delay line 2,

r5

/* t

md = D7_L; nodify(i3, nB);
m = -D7_L; r0 =dn(i3, nB);
DM Lrev_out put _taps + 6)= rO0;

| oad out put of buffer */

put in forground MAC register */
add to (feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

~———
* % ok ok *

put pass in MRLF */
input - (feedback gain)*(output) */
saturate if necessary */

put MAC result in register file */

input of all

~——
L

r0 = sanpleD6_L = D6_L-th tap */
/* point to d-th tap */

/* put d-th tap in data register */

/* wite to 5th location in left reverb output buffer */
r0 = sanpleD3_R = D3_R-th tap */

/* point to d-th tap */

/* put d-th tap in data register */

/* wite to 2nd location in left reverb output buffer */
/* save to input of buffer, update pointer */

/* save current allpass 2 pointer address for next tine */

/* get oldest sanple, tine delay = D _Line2 x fs*/
r0 = sanpleD7_L = D7_L-th tap */

point to d-th tap */

put d-th tap in data register */

wite to 6th location in left reverb output buffer */

/
/
/

* % ok

/* tap inside of circular delay line 2, rO = sanpleD4_R = D4_R-th tap */

m = D4R nodify(i3, nB); /* point to d-th tap */

m = -D4 R r0 =dmi3, nB); /* put d-th tap in data register */

DM Rrev_out put _taps + 3)= r0; /* wite to 3rd location in left reverb output buffer */
dm(i 3, -1) =r3; /* wite input sanple to buffer */

/* feed output back to top of tank */

r5 = DMrecircul at e2_f eedback) ; /* feed to other side of tank 8 */

di f fusor _B1:

B7 decay_di f fuser _B1;

17 = DM all _pass_ptr7);
L7 = @lecay_diffuser_B1;
rl = DM decay_di ffusion_1);
ro = ri5;

rl0 = DM 17, 0);

nr1f = r10;

mf =nmf - r1*r0 (SSFR);
mf = SAT mrf;

r3 = nrlif;

nr1lf = ro0;

mf =nmf + r1*r3 (SSFR);
nrf = SAT nrf;

rl0 = nrif;

DM 17,-1) = rl0;

DM al | _pass_ptr7) =17,

audi o_del ay3:
r5 = dn(i4, 0);

al I pass filter with variable delay */

set base address to buffer */

get previous allpass 2 pointer address */
set length of circular buffer */
feedback gain for allpass 1*/

tank input 1 */

~—————
E I

| oad out put of buffer */

put in forground MAC register */
add to -(feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

~————
* ok ok Ok *

put input of all pass in MRLF */
input + (feedback gain)*(output)
saturate if necessary */

put MACresult in register file */

save to input of buffer, update pointer */

save current allpass 2 pointer address for next time */

*/

~—————
* %k ok ok Ok F

/* get oldest sanple, tine delay = D Line3 x fs */

/* tap inside of circular delay line 3, rO = sanpleD1_L = D1_L-th tap */

mi = D1_L; nodify(id4, nmd); /* point to d-th tap */

m = -D1_L; r0 =dnm(id4, md); /* put d-th tap in data register */

DM Lrev_out put _taps)= r0; /* wite to O'th location in left reverb output buffer */
/* tap inside of circular delay line 3, rO = sanpleD2_L = D2_L-th tap */

mt = D2 L; nodify(id4, nd); /* point to d-th tap */

md = -D2_L; r0 =dmii4, nmd); /* put d-th tap in data register */

DM Lrev_out put _taps + 1)= rO0; /* wite to 1st location in left reverb output buffer */
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/* tap inside of circular delay line 3, r0 = sanpleD5_R = D5_R-th tap */

= D5_R nodify(i4, m); point to d-th tap */

m = -D5 R r0 = dmi4, m); put d-th tap in data register */

DM Rrev_out put _taps + 4)= r0; wite to 4th location in left reverb output buffer */

~—
EE

dn(i4, -1) =r3; /* store current input into delay line */

conb fllter 3

di f fusor _B2:

comb filter 3 */

r4=r5, /* r4 = conb filter input */

r6 = dn(danping); /* high frequency danpling gain */

r7 = Ox7FFFFFFF; /* 0.99999 or approximately = 1 */

r8 =r7 - ré6; /* r8 =1 - danping */

r5 = DM conb3_f eedback_state); /* read previous |ow pass filter output state */
mf = r4*r8 (SSF); /* scale conmb filter input */

mf = nmf + r5*r6 (SSFR); /* add previous filter state */

rl10 = nrif; /* r10 = conb filter output */
dn(conb3_feedback_state) = r10; /* replace with new filter state */

rll = DM decay);
r0 = r10*r11 (SSFR);

audi o_del ay4:

/* allpass filter with variable delay */
B7 = decay_di ffuser_B2; | * set base address to buffer */
17 = DM al | _pass_ptr8); /* get previous allpass 2 pointer address */
L7 = @lecay_diffuser_B2; /* set length of circular buffer */
Rl = DM decay_di ffusion_2); /* feedback gain for allpass 1*/
RO = R3; /* output of allpass 1 = input of allpass 2 */
rl0 = DM 17,0); /* |l oad output of buffer */
nr1f = r10; /* put in forground MAC register */
mf =nmf +r1*r0 (SSFR); /* add to (feedback gain)*(input) */
mrf = SAT mrf; /* saturate if necessary */
r3 = nrlif; /* output of all pass in R3 */
nr1lf = ro0; /* put input of all pass in MRLF */
mf =nmf - r1*r3 (SSFR); /* input - (feedback gain)*(output) */
nrf = SAT mrf; /* saturate if necessary */
rl10 = nrif; /* put MACresult in register file */
/* tap inside of decay diffuser filter delay line, rO = sanpleD3_L = D3_L-th tap */
n7 = D3_L; rmd|fy(|7 nv) ; /* point to d-th tap */
nm/ = -D3_L; rO dm(i 7, nv); /* put d-th tap in data register */
DM Lr ev_out put taps + 2)=r0; /* wite to 2nd location in left reverb output buffer */
/* tap inside of decay diffuser A2 filter delay line, rO = sanpleD6_R = D6_R-th tap */
7 = D6_R rmdlfy(|7 nv) ; /* point to d-th tap */
nw=-D6R r0 dm(i 7, nv); /* put d-th tap in data register */
DM Rr ev_out put taps + 5)=r0; /* wite to 5th location in left reverb output buffer */
DM17,-1) = rl0; /* save to input of buffer, update pointer */
DM al | _pass_ptr8) = 17; /* save current allpass 2 pointer address for next tine */
r5 = dmii5, 0); /* get ol dest sanple, time delay = D Lined4 x fs */
/* tap inside of circular delay line 4, rO = sanpleD4_L = D4_L-th tap */
m = D4 L; nodify(i5, nb); /* point to d-th tap */
md = -D4_L; r0 =dmi5, nb); /* put d-th tap in data register */
DM Lrev_out put _taps + 3)= r0; /* wite to 3rd location in left reverb output buffer */
/*

D7_R,  nodify(i5, nb); point to d-th tap */
=-D7_R r0 = dn(i5, nb); put d-th tap in data register */
DM Rrev_out put _taps + 6)= rO0; wite to 6th location in left reverb output buffer */

22

* % ok

tap inside of circular delay line 4, r0O = sanpleD7_R = D7_R-th tap */
= /
= /

/

dm(i 5, -1) =r3; /* save delay line input to buffer */

/* feed output back to top of tank */
= DMrecircul atel_feedback); /* feed to other side of tank 8 */

reverb_out put _t aps:
/* conbine all of the left & right reverb output taps taken at different point in the holding tank */
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/* left output, all wet */

BO = Lrev_output_taps;
R1 = 0x4CCCCCCD;
RO = DM 10, 1);
MRF = RO*R1 (SSF), RO = DM 10, 1);
MRF = MRF + RO*R1 (SSF), RO = DM 10
MRF = MRF - RO*R1 (SSF), RO = DM 10
MRF = MRF + RO*R1 (SSF), RO = DM 10
MRF = MRF - RO*R1 (SSF), RO = DM 10
MRF = MRF - RO*R1l (SSF), RO = DM 10
MRF = MRF - RO*R1 (SSFR);
R2 = MRILF;
DMreverb left) = R2;
/* right output, all wet */
Bl = Rrev_output_taps;
Rl = 0x4 ;
RO = DMI1,1);
MRF = RO*R1 (SSF), RO = DM 11,1);
MRF = MRF + RO*R1 (SSF), RO = DM 11
MRF = MRF - RO*R1 (SSF), RO = DM 11
MRF = MRF + RO*R1 (SSF), RO = DM 11
MRF = MRF - RO*R1 (SSF), RO = DM 11
MRF = MRF - RO*RLl (SSF), RO = DM |1
MRF = MRF - RO*Rl1 (SSFR);
R2 = MRILF;

R2;

DMreverb_right) =
RTS;

reverb_m xer:

r2 = 0x2AAA0000;

/* mx |left channel */

rl10 = DM Left_Channel);
r1l1 = DM DRY_GAI N_LEFT);
rl0 = r10 * rl1i(ssf);

mf =r2 * r10(ssf);

rl = dm(reverb_left);
r1l1 = DM WET_GAI N_LEFT);
rl =rl1* rll (ssf);

mf = nmf + rl*r2 (ssf);
rl0 = nrif;

rl = dm(predel ay_out put);
r4 = DM PREDEL_GAI N_LEFT);
r3 =rl1* r4 (ssf);

mf = nmf + r3*r2 (ssfr);
rl0 = nrif;

dn( Left _Channel ) = r10;

/* mx right channel */

r10 = DM Ri ght _Channel ) ;
r1l1 = DM DRY_GAI N_RI GHT) ;
rl10 = r10 * r11(ssf);
mf =r2 * r10(ssf);

rl = dm(reverb_right);

ril1 = DM WET_GAI N _RI GHT);
rl =rl1* rll (ssf);

mf = mf + r1*r2 (ssf);
r10 = nr1f;

rl = dn(predel ay_out put);
r4 = DM PREDEL_GAI N_RI GHT);
r3 =rl1* r4 (ssf);

mf =nmf + r3*r2 (ssfr);
r10 = nr1f;

dm( Ri ght _Channel) = r10;

rts;

/*
/*
/*

~
* ok

~——— ~_~——
* %k ok ok * EE

~—
EE

~———— ~——
* ok ok Ok * L

~——
* % ok

sumof left reverb output taps */
scal e tap outputs by 0.60 */
load first output tap */
/* conpute product, |oad next output*/
/* conmpute sum of products */
/* and so on ... */
/* save left reverb result */
/* sumof right reverb output taps */
/* scale tap outputs by 0.60 */
/* load first output tap */
/* conpute product, |oad next output*/
/* conmpute sum of products */
/* subtract product */
/* and so on ... */

/* save right reverb result */

set up scaling factor for result */
mx input with eref & reverb result by 1/3 */

get current left input sanple */
scal e between 0x0 and Ox7FFFFFFF */

x(n) *(G.left) */
0.33 * (Gleft) * x(n) */
get reverb result */
scal e reverb between 0x0 and Ox7FFFFFFF */
x_reverb(n) * RG|eft */
add reverb to input sanple */

0. 33*x(n) +0.33*x(rev_result) */

scal e between 0x0 and Ox7FFFFFFF */

x_er(n) * (ER_G.left) */
yL(n)=0.33*x(n) +0.33*x(rev_result) + 0.33*x(ear_ref)
output left result */

get current right input sanple */

scal e between 0x0 and Ox7FFFFFFF */

x(n) *(G_right) */

0.33 * (Gright) * x(n) */

get reverb result */

scal e reverb between 0x0 and Ox7FFFFFFF */
x_reverb(n) * RG.right */

add reverb to input sanple */

0.33*x(n) +0.33*x(rev_result) */

scal e between 0x0 and OX7FFFFFFF */

x_er(n) * (ER_G.right) */
yR(n)=0.33*x(n) +0.33*x(rev_result) + 0.33*x(ear_ref)
output right result */

*/

*/
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3.4 Amplitude-Based Audio Effects

Amplitude-Based audio effects simply involve the manipulation of the amplitude level of the audio signal, from simply
attenuating or increasing the volume to more sophisticated effects such as dynamic range compression/expansion. Below isa
list of effectsthat can fall under this category:

Volume Control
Amplitude Panning (Trigonometric / Vector-Based)
Tremolo (Auto Tremolo)
“Ping-Pong” Panning (Stereo Tremolo)
Dynamic Range Control
- Compression
- Expansion
- Limiting
Noise Gating

3.4.1 Tremolo - Digital Stereo Panning Effect

Tremolo consists of panning the output result between the left and right output stereo channels at a slow periodic rate. Thisis
achieved by allowing the output panning to vary in time periodically with alow frequency sinusoid. This example

pans the output to the left speaker for positive sine values and pans the output to the right speaker for negative sine values
(Figure 85). Theanalog version of this effect was used frequently on guitar and keyboard amplifiers manufactured in the '70s.
A mono version of this effect (Figure 84) can be done easily by modifying the code to place the tremolo result to both
speakersinstead of periodically panning the result. The I/O difference equation is as follows:

y(n) = x(n) *sin(2pf,et)| , Mono Tremolo

Figure 84. Figure 85.
Mono Implementation of the Tremolo Effect Stereo Implementation of the Tremolo Effect
; _ a(m) = sinusoidally
Sine Look-Up a(m) = sinusoidally Sine Look-Up varying amplitude
varying amplitude
Amplitude Amplitude - —_—
Modulation of input < — Modulation of input + a(m)
x(n) x(n) a(m)
a(m) +//_> yL(n)
x(n)a(m) x(n) 'kxj P '\
> > x(n)a(m
x(n) xX) y(n) — (N
y (n)=yr(n)=y (n) - a(m)

For Stereo Tremolo:

when a(m) >0
x(n)a(m) panned to left channel
right channel is zero

when a(m) <0
x(n)a(m) panned to right channel
left channel is zero
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Example Stereo Tremolo Implementation on the ADSP-21065L

trenmol o_effect:

ri = DMl eft_input);
ri = ashift rl by -1;
r2 = DMright _input);
r2 = ashift r2 by -1;
r3 =r2 +ri;

/* generated sine value fromwavetabl e generator, where r4 = sin(2*pi*fc*t) */
r4 = dm(si ne_val ue);
ntf =r3 * r4 (SSFR);
rs nr 1f ;
ra pass r4; /* read current sine value to pan left or right */
/[* if + then pan left, if - then pan right */
| F LE JUVMP pan_right channel;

pan_l eft _channel :
DMl eft_output) = rb5;
ré = 0x00000000;
DM right_output) = r6;
JUMP done;

pan_right channel:
ré = 0x00000000;
DM | eft _output) = r6;
DM right_output) = r5;

done: rts;

3.4.2 Signal Level Measurement

There are many ways to measure the amplitude of asignal. The technique described below uses a simple signal averaging
algorithm to determine the signal level. It rectifies the incoming signal and averages it with the 63 previous rectified samples.
Notice, however, that it only requires 6 instructions to average 64 values. Thisis because we are not recalculating the
summation of 64 values and dividing this sum by 64 but rather updating a running average. Thisis how it works:

_X[n- 64]+X[n- 63] +x[n- 62]+...+X[n- 1]

Xaverageold - 64
Xacsmgons = X[n- 64] N x[n- 63 N x[n- 62] - x[n- 7]
64 64 64 64
_X[n- 63| +x[n- 62] +X[n- 61]+...+X[n]
Xaveragenew - 64
X = X[n- 63 N X[n- 63 N X[n- 6]] - X[n]
vera 64 64 64 64
_Xn] xn- 64]
Xaveragenew - Xaverageold - 64 - 64
_ X[n] x[n- 64]
Xaveragenew - Xaverageold + 64 - 64

This algorithm needs to be run 64 times before Xayerageaid CONtains avalid signal average value.
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/* set up variables */

.segment /dm dm vari abl es;
.var average_line[64];
. endseg;

Ampl i tude Measurenent

f15 = 1/ 64

fO = current sample

f14 = current anplitude

i7 = pointer to average_line

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::*/
Anpl i t ude:
fO = abs fO; /* take absolute val ue of inconming sanple */
fo =f0 * f15; /* divide incom ng sanple by |ength of average line */
fl1 =dmi7,0); /* fetch last value in average line */
fl14 = f14 + fO; /* add it to the running average val ue */
rts(db); /* del ayed return from subroutine */
fl14 = f14 - 1, /* subtract new sanple fromrunning average */
dm(i7,1) = fO0; /* store new sanple over old sanple in average |line */

3.4.3 Dynamics Processing

Dynamic processing algorithms are used to change the dynamic range of asignal. This means altering the distance in volume
between the softest sound and the loudest sound in asignal. There are two types of dynamic processing algorithms :
compressorg/limiters and expanders.

3.4.3.1 Compressors and Limiters

The function of a compressor and limiter isto keep the level of asignal within a specific dynamic range. Thisisdoneusing a
technique called gain reduction. A gain reduction circuit reduces the amount of additional gain above athreshold setting by
acertain ratio (Stark, 1996). The ultimate objective isto keep the signal from going past a specific level.

Compressors and limiters have many applications. They are used to limit the dynamic range of asignal so it can be
transmitted through a medium with alimited dynamic range. An expander (covered later in this section) can then be used on
the other side to expand the dynamic range back to its original levels. Compressors are also widely used in the recording
industry to prevent signals from distorting as aresult of overdriven mixer circuitry.
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Compressors

Parameters
1nput Signal Qutput Signal Threshold : the level at which the dynamics processor begins
dynarmic range = 11008 dynamic range = 50 JB adjusting the volume of the signal

—— > Compressor ——> . . . .
Compression Ratio : level comparison of the input and output

signals of the dynamics processor past the threshold

% W
S Attack Time: The amount of time it takes once the input signal
has passed the threshold for the dynamics processsor to begin

attenuating the signal

Attack Time

.......................................................... Release Time : The amount of time it takes once the input stgnal
has passed below the threshold for the dynamics processor to stop
Compressors are used to ‘compress' the dynamic range of asignal attenuating the signal

Ratio=2:1

10" ‘ ‘ /

Output Level (dB)

Input Level (dB)

Threshold =-5dB or 0.5

There are two primary parameters for a compressor : threshold and ratio. The threshold isthe signal level at which the gain
reduction begins and the ratio is the amount of gain reduction that takes place past the threshold. A ratio of 2:1, for example,
would reduce the signal by afactor of two when it passed the threshold level as seen in the first compressor example below.

Two other parameters commonly found in compressors are attack time and release time. The attack is the amount of time it
takes the compressor to begin compressing asignal once it has crossed the threshold. This helps preserve the natural
dynamics of asignal. The release time, on the other hand, is the amount of time it takes the compressor to stop attenuating the
signal onceitslevel has passed below the threshold.

A compressor with aratio greater than about 10:1 is considered alimiter (Stark, 1996). The effect of alimiter ismorelike a
clipping effect than a dampening effect of alow-ratio compressor. This clipping effect can add many gross harmonicsto a
signal as seen in the examples below. These harmonics increase in number and amplitude as the threshold level islowered.

The figures on the following page show the example input and output waveforms, FFTs and gain ratios of some different
compressor configurations.

Compressor Characteristics: threshold = 0.5, ratio=2:1
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Input Level (dB)

Compressor Input FFT of Compressor Input
10°
)
: ! ; : : : : Z
0 200 400 600 800 1000 0 100 200 300 400 500 %
Compressor Output : threshold = 0.5, ratio = 2:1 " FFT of Compresor Qutput El
1 T T T . 102 1 T . 1 g
10
10°
10°
: : : : 4 : ; ; 10"
10 : - : ‘ 10 10°
0 200 400 600 800 1000 0 100 200 300 400 500 Input Level (dB)
Compressor Characteristics: threshold = 0.5, ratio=8:1
Compressor Input n FFT of Compressor Input )
1 : : 10 1 | : ; 10
05 10°
0 10°
-0.5 10 o
: : : =
-1 : : : 10° : ‘ ‘ E
0 200 400 600 800 1000 0 100 200 300 400 500 K]
Compressor Output : threshold = 0.5, ratio = 8:1 B FFT of Compresor QOutput 3
! ! ! ! g
' ' ' ' 101 0
7o 200 400 600 soo  1o00] |17 : : : ; 10 10
0 100 200 300 400 500 Input Level (dB)
Compressor Characteristics: threshold = 0.5, ratio = 20:1
Compressor Input B FFT of Compressor Input o
1 T T 10 T T T 1 10
10° ‘ ‘
10°
2
0.5} 10 o
=
: : " ! ! ! ! =
-1 1 1 ; 10 ]
0 200 400 600 800 1000 0 100 200 300 400 500 3
Compressor Output : threshold = 0.5, ratio = 20:1 . FFT of Compresor Output E
05
0
-0.5 :
; : : : -4 : : : ' 10 p .
-1 10 10 10
0 200 400 600 800 1000 0 100 200 300 400 500
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Compressor Characteristics: threshold = 0.75, ratio= ¥:1

Limiter Input

1 . , FFT of Limiter Input 10"
H 10
A I |
j 10° .
0 g
05 \ \ \ / \ 107 e e B 1’
% 5
o 50 100 150 200 10° 5
0 20 40 60 80 100 ES
Limiter Output : threshold = 0.75 5 FFT of Limiter Output : threshold = 0.75 =
1 T 10 Q 10?
05 \ / \ 1 ’\ -
\ \ N v A
0.5 : 10°

" 10° 10° 10" 10
"o 50 100 150 200 0 20 40 60 80 100 input Level (dB)

The code example below is a simple stereo compressor. This implementation does not use the attack and release parameters.

Stereo Compressor | mplementation on an Analog Devices ADSP21065L

/* St ereo Conpressor
i nputs:
f2 = left channel data
f3 = right channel data
out put s:
f2 = compressed | eft channel data
f3 = conpressed right channel data
*/
Conpr essor:
fO = 0.05; [* fO = ratio = 1/20 */
f1 = 0.5; /[* f1 = threshold = 0.5 */
f4 = abs f2;
conp(f4,f1); /* 1s left channel past threshold? */
if LT junp CheckRight; /* If not, check the right channel */
fa =14 - f1, /* signal = signal - threshold */
fa =14 * f0; /* signal = signal * ratio */
fa =14 + f1, /* signal = signal + threshold *
f2 = f4 copysign f2; /* f2 now contains conpressed | eft channel */
CheckRi ght :
f4 = abs f3;
conp(f4,f1); /* 1s right channel past threshol d? */
if LT rts; /[* if not, return from subroutine */
fa =14 - f1, /* signal = signal - threshold */
fa =14 * f0; /* signal = signal * ratio */
rts (db); /* del ayed return from subroutine */
fa =14 + f1, /* signal = signal + threshold *
f3 = f4 copysign f3; /* f2 now contains conpressed right channel */

97



Limiters

A limiter is acompressor with a compression ratio greater
than about 10:1

........................ ] JAERAR
3 VAR VAN

1 :
0 200 400 600 800 1000
Compressor Output : threshold = 0.5, ratio = 20:1
1 T

"""""""""""" B I EvATASAS

10 10 "o 200 400 600 800 1000
Input Level (dB)

Output Level (dB)

The following code exampleis a stereo limiter with aratio of 1:¥ - in other words, it clips the signal at a certain threshold.
As seen below, thisis extremely simple to do using the clip function.

Stereo Limiter Implementation on an Analog Devices ADSP21065L

/* Stereo Limter
| nput s:
f2 = left channel data
f3 = right channel data
CQut put s:
f2 =limted left channel data
f3 =1limted right channel data
*/
Limt:
fl1 = 0.75; /* Threshold = .75 */
rts (db); /* del ayed return from subroutine */
f2 =clip f2 by f1; /* Limt |left channel */
f3 =clip f3 by f1; /* Limt right channel */

3.4.3.2 Noise Gate/Downward Expander

A noise gate or downward expander is used to reduce the gain of a signal below a certain threshold. Thisis useful for
reducing and eliminating noise on aline when no signal is present. The difference between a noise gate and a downward
expander is similar to the difference between alimiter and a compressor. A noise gate cuts signalsthat fall below a certain
threshold while a downward expander has aratio at which it dampens signals below a threshold.
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Noise Gate Characteristics: Threshold = 0.1

Noise Gate Input B FFT of Noise Gate Input
1 j 10 T : :
10°
10°
10 e 8 @
H B B B o
i 10" i i i i g
200 600 800 00 0 100 200 300 400 500 &
Noise Gate Output : threshold = 0.1 4 FFT of Noise Gate Output ;
1 1 10 T T ‘ g
H ! ! e
10° ; : :
10° b g o
107 . ‘ ‘ ‘ 1072 10°
400 0 100 200 300 400 500 Input Level (dB)
Noise Gate Input
107 ¢ T T T T T T
L. . 10°} -
Compressor : Limiter :: Downward Expander : Noise Gate g
E\O
10} noise floor

Noise Gate o'l

Downward Expander . . . A
10° 0 20 40 60 80 100 120

Time

Noise Gate Output

Amplitude

| : 10'L L 1. s
0 20 40 60 80 100 120

The following code example is a stereo noise gate. This agorithm turns off the signal if its amplitude is below a certain level

10 Time

using RMS level detection of asignal to determine if the signal itself should be turned on or not.

Stereo Noise Gate Implementation on an Analog Devices’ ADSP21065L

140

140

180

180

200

200

[ *xx
*

T T e T T RN I U

NO SE_GATE. ASM

ADSP-21065L EZLAB Noi se Gate Effect Program
Devel oped using ADSP-21065L EZ-LAB Eval uation Platform

What the noi se gate does?

Reduces the anount of gain below a certain threshold to reduce or elimnate
noi se produced when no audio signal is present, while still allow ng the

signal to pass thru. This is useful after processing nultiple audio effects
that can introduce noise above the noise floor of the AD1819a DACs.

Par amet ers:

Threshol d: The level at which the noise gate processor begins decreasing the

vol ume of the signal.

NOTE: Threshold values are in RVMS5. This routine calculates the RV5 of the
audio signal in deternmining if |low level noise should be renoved. A running
average is not sufficent otherwise the audio signal will be severely distorted

Future Paraneters that will be added in Rev 2.0:

Attack Tine: The anount of tine it takes once the input signal has passed the
threshold for the dynam cs processor to begin attenuating the signal.

Rel ease Tine: The anount of tine it takes once the input signal has passed

EE R s

%ok ok Rk 3k ok Ok % R 3k ok Rk 3k 3k ok Ok %k 3k Ok Xk F
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The audio data is sent out to the AD1819A Line CQutputs
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/* ADSP-21065L System Regi ster bit definitions */

#i ncl ude "def 21065 . h"

#i ncl ude "newb5Ldef s. h"

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

. GLOBAL Noi se_Gat e;

. GLOBAL sel ect _t hreshol d;

. GLOBAL init_averaging_buffers;
.segment /dm noi segt ;

.var I RQL_counter = 0x00000003;
.var threshol d = 0. 04,

.var Left _RMS Result;

.var Ri ght _RMS_Resul t;

.var left_float;

.var right_float;

.var | eft _RVS_squared = 0.0;
.var ri ght _RVS_squared = 0. 0;
.var | eft _RVS_|ine[500];

.var right _RVS_|ine[500];

*/

. endseg;

. segnent /pm pm code;

init_averaging_buffers:

B6 = left_RMS |ine;
L6 = @eft_RM5_|ine;
e = 1,

LCNTR = L6;

DO clrDlineL UNTIL LCE;
clrDineL: dm(i 6, m6) = O;
B7 = right _RM5_|ine;

L7 = @ight _RM5_ |ine;

nw = 1,

LCNTR = L7,

DO clrDlineR UNTIL LCE;
clrDineR dm(i 7, nv) = 0;

RTS;

~
* ok

/*

/*

/*

/*

used to detect

del ay-line buffer pointer and length */

clear delay line buffer to zero */

del ay-line buffer pointer and length */

clear delay line buffer to zero */

bel ow the threshold for the dynamics processor to stop attenuating the signal

LR e

the RVB val ue of the |eft channel
used to detect the RVS val ue of the right channel

IEEEE AR EEE R EEEEEEEEEEEE R EREEEEEEEE R R R R R R EEE LR

*

S:
| eft channel data
ri ght channel

=]
Inunc
=4

t put s:

I .

dat a

conpressed | eft channel
conpressed right channel

STEREO NO SE GATE ROUTI NE

dat a
dat a

L

*
*
*
*
*
*
*
*
*
*
*
*

/

audi o si gnal
audi o si gnal

*/
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**********************************************************************************/

Noi se_Gat e:
r2 = DM Left _Channel ) ; /* left input sanple */
r3 = DM R ght _Channel ) ; /* right input sanple */
rl = -31; /* scale the sanple to the range of +/-1.0 */
f2 = float r2 by ri,; /* convert left fixed point sanple to floating point */
f3 =float r3 by ri; /* convert right fixed point sanple to floating point */
DM left _float) = f2; /* save floating point sanples tenporarily */

DMright _float) = f3;

f15 = 0.002; /* 1/500 = 0.002*/
f5 = DM threshol d); /* f1 = Threshold = 0.1 */
RVS | ef t _val ue
fOo = abs f2 /* take absol ute value of incomng |left sanple */
fl1=1f0; /* get ready to square the input */
fo=f0* f1; /* f0 = square(abs(x)) */
fo =f0 * fi5; /* divide incom ng squared sanple by length of RMS line */
f1 = dn(i6,0); /* fetch ol dest value in RVM5 line */
f10 = DM | ef t _RMS_squar ed) ; /* get previous running average of the squares of the input */
f10 = f10 + fO; /* add scal ed squared i nput to the running average val ue */
f10 = f10 - f1; /* subtract ol dest squared sanple fromrunning average */
DM | eft _RMS_squared) = f10; /* save new runni ng average of the square of the inputs sanples */
dm(i 6,1) = fO0; /* store new scal ed squared sanple over old sanple in RMS |ine */
/* cal cul ate square root of new average in f10 based on the Newton-Raphson iteration algorithm*/
f8 = 3.0;
f2 = 0.5;
f4 = RSQRTS f 10; /* Fetch seed */
fl1="f4
fl12 = f4 * f1; [* F12=X0"2 */
f12 = f12 * fO; [* F12=C*X0"2 */
fa =12 * f4, f12 = f8 - f12; /* F4=.5*X0, F10=3-C*X0"2 */
fa =14 * 12, [* F4=X1=.5*X0(3- C*X0"2) */
fl1 =14
f12 = f4 * f1, [* F12=X172 */
f12 = f12 * fO; [* F12=C* X172 */
fa =12 * f4, f12 = 8 - f12; /* F4=.5*X1, F10=3-C*X1"2 */
f4 =14 * f12; [* F4=X2=.5*X1(3-C*X1"2) */
fl1="f4
fl12 = f4 * f1; [* F12=X2"2 */
f12 = f12 * fO; [* F12=C*X2"2 */
fa =12 * f4, 12 = f8 - f12; /* F4=.5*X2, F10=3-C:X2"2 */
fa =14 * 12, [* F4=X3=.5*X2(3-C*X2"2) */
f10 = f4 * f10; [* X=sqrt(Y)=Y/sqrt(Y) */

DM Left _RMS_Resul t)

f 10;

gate_left:
f2 = DMl eft_float);
f10 = abs f10; /
conp(f10,f5); /
if LT f2 =12 - f2; /

get absol ute value of running average */
conpare to desired threshold */
if left channel < threshold, |left channel = 0.0 */

EE

/* send gated results to | eft DAC channel */

rl = 31, /* scale the result back up to MSBs */
r2 =fix f2 by r1,; /* convert back to fixed point nunber */
DM Left _Channel ) = r2;

RVS_ri ght _val ue:

fO = abs f3; /* take absolute value of incomng right sanple */

fl1=10; /* get ready to square the input */

fo=f0* f1; /* f0O = square(abs(x)) */

fo =f0 * f15; /* divide incom ng squared sanple by length of RVS line */

fl1 =dm(i7,0); /* fetch oldest value in RVM5 line */

f10 = DM right _RMS_squared); /* get previous running average of the squares of the input */
f10 = f10 + fO; /* add scal ed squared input to the running average val ue */

f10 = f10 - f1; /* subtract ol dest squared sanple fromrunning average */

DM right _RMS squared) = f10; /* save new running average of the square of the inputs sanples */
dm(i 7,1) = f0; /* store new scal ed squared sanple over old sanple in RVS line */
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/* caclul ate square root of new average in f10 based on the Newton-Raphson iteration algorithm*/
f8 = 3.0;
f2 = 0.5;
f4 = RSQRTS f 10; /* Fetch seed */
f1="f4;
fl12 = f4 * f1; [* F12=X0"2 */
f12 = f12 * fO; [* F12=C*X0"2 */
fa =12 * f4, f12 = f8 - f12; /* F4=.5*X0, F10=3-C*X0"2 */
fa =14 * 12, [* F4=X1=.5*X0(3- C*X0"2) */
f1 =14
f12 = f4 * f1, [* F12=X172 */
f12 = f12 * fO; [* F12=C* X172 */
fa =12 * f4, f12 = 8 - f12; /* F4=.5*X1, F10=3-C*X1"2 */
f4 =14 * f12; [* F4=X2=.5*X1(3- C*X1"2) */
f1="f4;
fl12 = f4 * f1; [* F12=X2"2 */
f12 = f12 * fO; [* F12=C*X2"2 */
fa =12 * f4, f12 = f8 - f12; /* F4=.5*X2, F10=3-C:X2"2 */
fa = f4 * £12; [* F4=X3=.5*X2(3-C*X2"2) */
f10 = f4 * f10; [* X=sqrt(Y)=Y/sqrt(Y) */
DM Ri ght RVS_Result) = f10;

gate_right:

f3 = DMright_float):
10 = abs f10;

conp(f10,f5);

if LT f3 =13 - f3; /* if right channel < threshold, right channel = 0 */
/* send gated results to right DAC channel */

rl = 31, /* scale the result back up to MSBs */

r3 =fix f3 by r1,; /* convert back to fixed point nunber */

DM R ght _Channel ) = r3;

rts;

3.4.3.3 Expanders

An expander is adevice used to increase the dynamic range of asignal and complement compressors. For example, asignal
with a dynamic range of 70 dB might pass through an expander and exit with a new dynamic range of 100 dB. These can be
used to restore a signal that was altered by a compressor.

Below are the properties of an expander.

Expanders

Input Signal Output Signal
dynamic range = 50d8 dynamic range = 110 dB

— | Expander [ >

AA A A

Release Time

Expanders are used to ‘expand’ the dynamic range of asignal
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* bel ow the threshold for the dynamics processor to stop attenuating the signal *

LEE AR R R LR R R R R R R E R R R R LRy

/* ADSP-21065L System Regi ster bit definitions */

#i ncl ude "def 21065I . h"

#i ncl ude "newb5Ldef s. h"

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

. GLOBAL St er eo_Conpander ;

. GLOBAL sel ect _conpander _rati os;

. GLOBAL sel ect _conpander _t hreshol ds;

.segnment /dm conpand;

.var I RQL_counter = 0x00000003;
.var | RQ2_counter = 0x00000003;

.var conp_ratio = 0.05;
.var conp_threshold = 0.5;
.var expan_ratio = 1.5;
.var expan_t hreshold = 0. 2;

. endseg;

. segnent /pm pm code;

/**********************************************************************************

* STEREO COVPANDER ROUTI NE *

**********************************************************************************/

St er eo_Conpander :

r2 = DM Left _Channel ) ; /* left input sanple */
r3 = DM R ght _Channel ) ; /* right input sanple */
rl = -31; /* scale the sanple to the range of +/-1.0 */
f2 = float r2 by ri,; /* convert fixed point sanple to floating point */
f3 =float r3 by ri; /* convert fixed point sanple to floating point */
fO = DM conp_ratio); /* f0 = ratio = 1/20 */
f1 = DM conp_t hreshol d); /* f1 = threshold = 0.5 */
conpress_left:
f4 = abs f2;
conp(f4,f1l); /* Is left channel past threshol d? */
if LT junp conpress_right; /* 1f not, check the right channel */
fa =14 - f1; /* signal = signal - threshold */
f4 =14 * £0; /* signal = signal * ratio */
fa =14 + f1; /* signal = signal + threshold */
f2 = f4 copysign f2; /* f2 now contains conpressed | eft channel */

conpress_right:
f4 = abs f3;

conmp(f4,f1); /* I's right channel past threshol d? */
if LT junp expansion; /* if not, return from subroutine */
f4 =14 - £1; /* signal = signal - threshold */
fa =14 * f0; /* signal = signal * ratio */
f4 =14 + f1; /* signal = signal + threshold */
f3 = f4 copysign f3; /* f3 now contains conpressed right channel */
expansi on:
fO = DM expan_ratio); /* f0O =ratio = 1.4 */
f1 = DM expan_t hreshol d); /* f1 = threshold = 0.2 */
expand_| eft:
f4 = abs f2;
conp(f4,fl); /* |Is left channel past threshol d? */
if LT junp expand_right; /* 1f not, check the right channel */
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f4 =14 - f1 /* signal = signal - threshold */

fa =14 * f0; /* signal = signal * ratio */

f4 =14 + f1; /* signal = signal + threshold */

f2 = f4 copysign f2; /* f2 now contains conpressed | eft channel */
expand_ri ght:

f4 = abs 3

conp(f4,fl); /* |s right channel past threshol d? */

if LT junp finish_processing; /* if not, return from subroutine */

fa =14 - f1; /* signal = signal - threshold */

f4 =14 * £0; /* signal = signal * ratio */

fa =14 + f1; /* signal = signal + threshold */

f3 = f4 copysign f3; /* f3 now contains conpressed right channel */

finish_processing

rl = 31, /* scale the result back up to MSBs */
r2 =fix f2 by r1,; /* convert back to fixed point nunber */
r3 =fix f3 by ri; /* convert back to fixed point nunber */

/* send conpanded results to left and right DAC channels */
DM Left _Channel ) = r2;
DM R ght _Channel ) = r3;

rts;

3.5 Sound Synthesis Techniques

Sound synthesis is a technique used to create specific waveforms. It iswidely used in the audio market in products like sound
cards and synthesizers to digitally recreate musical instruments and other sound effects. The most simple forms of sound
synthesis such as FM and Additive synthesis use basic harmonic recreation of a sound using the addition and multiplication of
sinusoids of varying frequency, amplitude and phase. Sample playback and wavetable synthesis use digital recordings of a
waveform played back at varying frequencies to achieve life-like reproductions of the original sound. Subtractive Synthesis
and Physical Modeling attempt to simulate the physical model of an acoustic system.

3.5.1 Additive Synthesis

Fourier theory dictates that any periodic sound can be constructed of sinusoids of various frequency, amplitude and phase
[25]. Additive synthesisisthe processes of summing such sinusoids to produce awide variety of envelopes. By varying the
three fundamental properties : frequency, amplitude and phase over time, additive synthesis can accurately reproduce a
variety instruments.

In comparison to all other synthesis techniques, additive synthesis can require a significant amount of processing power based
on the number of sinusoidal oscillators used. Thereisadirect relationship between the number of harmonics generated and
the number of processor cyclesrequired. Below isthe basic formula.

y(n)=Asin(2Pfn+f )+ A sin(2Pf,n+f ,)+ Aisin(2Pf,n+f ,)...

3.5.2 FM Synthesis

FM Synthesisis similar to additive synthesisin that it uses simple sinusoids to create awide range of sounds. FM synthesis,
however, uses one finite formula to create an infinite number harmonics. The FM synthesis equation shown below uses a
fundamental sinusoid which is modulated by another sinusoid.

y(n) = A(n)sin(2Pf_n + 1 (n)sin(2Pf,n))

When this equation is expanded, we can see that an infinite number of harmonics are created.
y(n) = J,(n)sin(2Pf_n)
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+J,()[sin(2P (f, + f,)n)- sin(2P (f, - f,)n)]
+J,(n)[sin(2P (f_ +2f,)n)- sin(2P (f, - 2, )n)]
+J,(n)[sin(2P ( f, +3f,)n) - sin(2P (f, - 3fm)n)]...[2]

Because this method is very computationally efficient, it iswidely used in the sound card and synthesizer industry.

3.5.3 Wavetable Synthesis

Wavetable synthesisis a popular and efficient technique for synthesizing sounds, especially in sound cards and synthesizers.
Using alookup table of pre-recorded waveforms, the wavetable synthesis engine repeatedly plays the desired waveform or
combinations of multiple waveforms to simulate the timbre of an instrument. The looped playback of the sample can also be
modulated by an amplitude function which controls its attack, decay, sustain and release to create an even more realistic
reconstruction of the original instrument.

by
Figure 14: Figure 15: Figure 16:
One waveform period stored Waveforms added together and Repeated waveform modulated by an
in wavetable. repeated over time amplitude envelop.

This method of synthesisis simple to implement and is computationally efficient. In a DSP, the desired waveforms can be
loaded into a circular buffersto allow for zero-overhead looping. The only real computational operations will be adding
multiple waveforms, calculating the amplitude envelope and modulating the looping sample with it. The downside of wave-
table synthesisisthat it is difficult to approximate rapidly changing spectra.[1]

3.5.4 Sample Playback

Sample Playback is another computationally efficient synthesis technique that yields extremely high sound quality. An entire
sampleis stored in memory for each instrument which is played back at a selected pitch. Often times, these sample will have
loop points within them which can be used to alter the duration of the sustain thus giving an even more life-like reproduction

of the sound.

Figure 17

Although this method is capable of producing extremely accurate reproductions of almost any instrument, it requires large
amounts of memory to hold the sasmpled instrument data. For example, to duplicate the sound of a grand piano, the sample
stored in memory would have to be about 5 seconds long. If this sample were stereo and sampled at 44.1kHz, thissingle
instrument would require 441,000 Words of memory! To recreate many octaves of apiano, the system would require
multiple piano samples because slowing down a sample of a C5 on a piano to the pitch of a C2 will sound nothing like an
actual C2. Thistechniqueiswidely used in high-end keyboards and sound cards. Just like wavetable synthesis, sample
playback requires very little computational power. It can be easily implemented in a DSP using circular buffers with simple
loop-point detection.
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3.5.5 Subtractive Synthesis

Subtractive synthesis begins with asignal containing all of the required harmonics of asignal and selectively attenuating (or
boosting) certain frequencies to simulate the desired sound[2]. The amplitude of the signal can be varied using an envelope
function asin the other simple synthesis techniques. Thistechnique is effective at recreating instruments that use impulse-like

stimulus like a plucked string or a drum.

4. CONCLUSION

We have explored many of the basics in selecting the ADSP-21065L for use in digital audio applications. There are many
different DSPs on the market today and chances are there is one that fits your design needs perfectly. Because of this, it is
important to fully understand the type of algorithms and the amount of processing power that an application will require
before selecting aDSP. This paper has presented a subset of the expanding number of audio applications for DSPs and
provided some insight into their functionality and implementation. As DSPs become faster and more powerful, we will
undoubtedly witness new creative and ingenious DSP audio applications.
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