Her er litt info om hva som kan skje når vi når 3 grader. I linken er det også scenarioer for andre temperaturøkninger. Men jeg har en magefølelse for at 3 grader er realistisk. Og så kan de som ønsker det lese innlegget og nappe seg i løken.
Climate Code Red: What would 3 degrees mean?
Three degrees of warming
Three degrees may be the “tipping point” where global warming could run out of control, leaving us powerless to intervene as planetary temperatures soar. America's most eminent climate scientist, James Hansen says warming has brought us to the "precipice of a great “tipping point”. If we go over the edge, it will be a transition to “a different planet”, an environment far outside the range that has been experienced by humanity. There will be no return within the lifetime of any generation that can be imagined, and the trip will exterminate a large fraction of species on the planet" ["Wild" magazine, April 2007].
In the Pliocene, three million years, temperatures were 3 degrees higher than our pre-industrial levels, so it gives us an insight into the three-degree world. The northern hemisphere was free of glaciers and icesheets, beech trees grew in the Transantarctic mountains, sea levels were 25 metres higher [Climate Dynamics, 26, 249-365], and atmospherc carbon dioxide levels were 360-400 ppm, very similar to today. There are also strong indications that during the Pliocene, permanent El Nino conditions prevailed. Hansen says that rapid warming today is already heating up the western Pacific Ocean, a basis for a coming period of 'super El Ninos' [Proc. Nat. Acad. Sci., 103, 39, 14288-93].
Between two and three degrees the Amazon rainforest, whose plants produce 10 per cent of the world's photosynthesis and have no evolved resistance to fire, may turn to savannah, as drought and mega-fires first destroy the rainforest, turning trees back into carbon dioxide as they burn or rot and decompose [Theor. App. Climatology, 78, 137-56]. The carbon released by the forests destruction will be joined by still more from the world’s soils (see below), together boosting global temperatures by a further 1.5ºC [Nature, 408, 184-7]. It is suggested than in human terms the effect on the planet will be like cutting off oxygen during an asthma attack. A March 2007 conference at Oxford talked about ‘corridors of probability’ with models predicting the risk of the Amazon passing a "tipping point" at between 10 to 40 per cent over the next few decades. The UK's Hadley Centre climate change model, best known for warning of catastrophic losses of Amazon forest, predicts that, under current levels of greenhouse gas emissions, the chances of such a drought would rise from 5% now (one every 20 years) to 50% by 2030, and to 90% by 2100.
The collapse of the Amazon is part of the reversal of the carbon cycle projected to happen around 3 degrees, a view confirmed by a range of researchers using carbon coupled climate models. Vast amounts of dead vegetation stored in the soil – more than double the entire carbon content of the atmosphere – will be broken down by bacteria as soil warms. The generally accepted estimate is that the soil carbon reservoir contains some 1600 gigatonnes, more than double the entire carbon content of the atmosphere. The conversion will begin of the terestrial carbon sink to a carbon source due to temperature-enhanced soil and plant respiration overcoming CO2-enhanced photosynthesis, resulting in widespread desertification and enhanced feedback [Physics Today,
www.aip.org/pt/vol-55/iss-8/p30.html].
And it's already happening. A recent study found that the calculated increase in carbon lost by UK soil each year since 1978 is more than the entire reduction in emissions the UK has achieved between 1990 and 2002 as part of its commitment to Kyoto. As well, some recent studies suggest that the earth's carbon sinks are smaller than expected and climate by century's end could be on average up to 1.5 degrees hotter than current "business as usual" projections suggest [
http://www.csmonitor.com/2007/0503/p01s02-wogi.html]. New research published in "Science" in May 2007 suggests that the earth's ability to soak up the gases causing global warming is beginning to fail because of rising temperatures, in a long-feared sign of "positive feedback" (Michael McCarthy, The Independent, 18 May 2007).
Three degrees would likely see increasing areas of the planet being rendered essentially uninhabitable by drought and heat. Rainfall in Mexico and central America is projected to fall 50 per central. Southern Africa would be exposed to perennial drought, a huge expanse centred on Botswana could see a remobilisation of old sand dunes [Nature, 435, 1218-21], much as is projected to happen earlier in the US west. The Rockies would be snowless and the Colorado river will fail half the time. Drought intensity in Australia could triple, according to the CSIRO, which also predicts days in NSW above 35 degrees will increase 2 to 7 times.
With extreme weather continuing to bite – hurricanes may increase in power by half a category above today’s top-level Category Five – world food supplies will be critically endangered. This could mean hundreds of millions – or even billions – of refugees moving out from areas of famine and drought in the sub-tropics towards the mid-latitudes. As the Himalayan ice sheet relentlessly melts with rising temperatures, the long-term water flows into Asia's great rivers and breadbasket valleys -- the Indus, Ganges and Brahmaputra, the Mekong, Yangtse and Yellow rivers -- will fall dramatically. If global temperatures rise by three degrees, and that's becoming the un-official target for western governments, water flow in the Indus is predicted to drop by 90 per cent by 2100. The lives of two billion people are at stake.
As the Arctic continue to warm, melting permafrost in the boreal forests and further north in the Arctic tundra is now starting to melt, triggering the release of methane, a greenhouse gas twenty times more powerful than CO2, from thick layers of thawing peat. The West Siberian bog is estimated to contain 70 billion tonnes of CO2. Prof. Sergei Kirpotin, a botanist at Russia's Tomsk State University, says: "There's a critical barrier... Once global warming pushes the melting process past that line, it begins to perpetuate itself." The West Antarctic ice sheet would likely to irreversibly melting.